
GNU gettext for Delphi, C++ Builder and Kylix 1.2 beta

Lars B. Dybdahl

Peter Thornqvist

Jacquez Garcia Vasquez

Sandro Wendt

GNU gettext for Delphi, C++ Builder and Kylix 1.2 beta
by Lars B. Dybdahl, Peter Thornqvist, Jacquez Garcia Vasquez, and Sandro Wendt

Version 1.2 Edition
Published 2003
Copyright © 2003 by Lars B. Dybdahl, Free Software Foundation and others

Permission to use, copy, modify and distribute this document for any purpose and without fee is hereby granted in
perpetuity, provided that the above copyright notice and this paragraph appear in all copies.
Some parts are Copyright (C) by Free Software Foundation, Inc.

Table of Contents
Preface ... i
1. Introduction ...1

How does GNU gettext work? ...1
Creating po files..1
More gettext functions...2
Resourcestrings...2
Forms ...3

2. Action ..5
Localize your first application..5
New program versions, old translation files..6
Create a single language application with localized runtime library6
Uses clauses...7
Solving ambiguities ...8

Change words ...9
Adding spaces...9
Using domains ..9
Using trailing comments ...9

Plural forms...9
Database applications..11

Preventing unwanted translations...11
DisplayLabel property explained...11
Setting displaylabel at runtime...11
Display label at design time..11
Multiple field name translations ..12

Translation repositories ...12
3. Project management ...15

Introduction ..15
Coordinating translations ...15
The translator..15

4. Experienced programmers’ topics ...17
Determinism and responsibility...17
Text domain management...17
The better alternative to resourcestring ..17
Debugging...18
Directives...20

5. Advanced topics ..21
Migrating from the ITE to dxgettext..21

Introduction...21
The project ...21
Planning ...21
Tools I needed (and used)..22
Doing the conversion ...22
Common ancestor forms are good!..23
Handling components dxgettext doesn’t handle...24
Problems ..25
Conclusion ...26

Translation statistics...27
Multiple instances ..27
Multithreading issues ..27

iii

A. API reference ..29
procedure AddDomainForResourceString (domain:string);29
procedure RemoveDomainForResourceString (domain:string);29
function LoadResString(ResStringRec: PResStringRec): widestring;29
function LoadResStringW(ResStringRec: PResStringRec): widestring;29
function LoadResStringA(ResStringRec: PResStringRec): ansistring;29
var ExecutableFilename:string; ..29
procedure HookIntoResourceStrings (enabled:boolean=true;

SupportPackages:boolean=false);...29
const DebugLogFilename=’c:\dxgettext-log.txt’; ...30
TExecutable ...30
TGetPluralForm..30
TGnuGettextInstance class..30
procedure UseLanguage(LanguageCode: string); ..30
function _(msg:widestring):widestring; ...31
function GetCurrentLanguage:string;...31
function gettext(msg:widestring):widestring; ...31
function dgettext(Domain: string; MsgId: widestring): widestring;32
function ngettext(const

singular,plural:widestring;Number:longint):widestring;...........................32
function dnget-

text(Domain,singular,plural:widestring;Number:longint):widestring;
32

function getcurrenttextdomain:string; ..32
procedure textdomain(Domain:string); ..32
procedure bindtextdomain(Domain:string; Directory:string);33
procedure bindtextdomainToFile (Domain,Filename:string);33
procedure GetListOfLanguages (domain:string; list:TStrings);33
function GetTranslationProperty (Propertyname:string):WideString;34
function GetTranslatorNameAndEmail:widestring;...34
procedure SaveUntranslatedMsgids(filename: string); ..34
procedure TranslateProperties(AnObject:TObject; textdomain:string=”);34
procedure TranslateComponent(AnObject: TComponent;

TextDomain:string=”); ...35
function TP_CreateRetranslator:TExecutable; ...35
procedure TP_Ignore(AnObject:TObject; const name:string);.............................35
procedure TP_GlobalIgnoreClass (IgnClass:TClass); ...35
procedure TP_GlobalIgnoreClassProperty

(IgnClass:TClass;propertyname:string);..35
procedure TP_GlobalHandleClass (HClass:TClass;Handler:TTranslator);36

B. "Hello, World" source code...37
Sample.dpr ..37
gginitializer.pas...37
SampleForm.pas ...37
SampleForm.dfm..38

C. Dxgettext command-line tools reference...41
assemble...41
dfntopo...41
dxgettext ..41
dxgreg ..42
ixtopo ...42
msgimport ...43
msgmergePOT ..43
msgmkignore ..44
msgremove..44
msgshowheader..44
msgsplitTStrings...45
msgstripCR..45

iv

D. GNU Command-line tools reference...47
msgattrib..47
msgcat ..49
msgcmp..51
msgcomm ..52
msgen ...54
msgexec..55
msgfilter...56
msgfmt ...58
msggrep ...60
msghack...62
msginit ...63
msgmerge ..64
msgunfmt ..66
msguniq ...68
xgettext...70

E. GUI tools reference ..73
PO files ...73
MO files..73
Executables (DLL, EXE files) ..73
File folders ...73

F. Standards..75
ISO 639 language codes...75
ISO 3166 country codes ...77

G. File formats ...91
The format of GNU PO files ...91
The format of GNU MO files ..92

H. How to handle specific classes..95
VCL, important ones..95
VCL, not so important ...95
Database (DB unit) ...95
MIDAS/Datasnap ..95
Database controls ...95
Interbase Express (IBX)..96
Borland Database Engine (BDE) ..96
ADO components...96
ActiveX stuff ...96
Turbopower Orpheus ..96
Turbopower Essentials ..97
TMS Software TAdvStringGrid..97

I. Frequently Asked Questions ..99
Index..??

v

vi

Preface

TODO: utf-8 appendix. license chapter. A chapter with special notes for C++ Builder,
Kylix, Delphi etc. utf-8 appendix. More screenshots. Include unicode topics.

GNU gettext for Delphi, Kylix and C++ Builder, is a port of the general purpose
translation tool named GNU gettext.

There are several po file editors out there. In this manual, poedit will be assumed,
because it’s the most widely used program for Delphi programmers.

Please note that this manual is for both Windows and Linux users.

i

Preface

ii

Chapter 1. Introduction

How does GNU gettext work?
GNU gettext is based on the mo file format (explained later), and everything is based
on a function named gettext(), that can look up the English text in such a file, and
find the translation which is also in this file.

The simplest (but not easiest) way to put a translated caption on a label would there-
fore be:

Label1.Caption:=gettext(’Enter username:’);

If there is a translation, the translation will be assigned to the label. If there is no
translation, or the translation cannot be read for some reason, the text inside the () is
used instead.

In order to create an mo file, you write a po file and compile it using the msgfmt
compiler. A po file looks like this:

msgid ""
msgstr ""
"Project-Id-Version: Delphi 6 runtime translation\n"
"POT-Creation-Date: 2003-03-04 17:49\n"
"PO-Revision-Date: 2003-04-02 17:48+0100\n"
"Last-Translator: Lars B. Dybdahl <lars@dybdahl.dk> >\n"
"Language-Team: Dansk <da@li.org >\n"
"MIME-Version: 1.0\n"
"Content-Type: text/plain; charset=UTF-8\n"
"Content-Transfer-Encoding: 8bit\n"
"License: Freeware\n"

This is a comment from the programmer to the translator
#. Programmer’s name for it: SInvalidCreateWidget
#: Clx/QConsts.pas:22
msgid "Class %s could not create QT widget"
msgstr "Klassen % kunne ikke oprette en QT widget"

#. Programmer’s name for it: STooManyMessageBoxButtons
#: Clx/QConsts.pas:23
msgid "Too many buttons specified for message box"
msgstr "For mange knapper angivet for meddelelsesvindue"

Here, msgid marks the English original text, and msgstr marks the Danish transla-
tion. You can write this file using a text editor like notepad, wordpad etc.

As you might already guess, this system can be extended in many ways. The most
obvious is that you can have several mo and po files. If an application has more than
one file for each language, these are named text domains. The name of a text domain
is also the name of an mo file, without the extension. The default text domain is name
"default" an must therefore be in the file "default.mo", a compilation of "default.po".

Creating po files
Instead of typing the whole po file yourself, you can create it by scanning the source
code. There are several ways of doing that:

• There is a command line tool named dxgettext that can scan Delphi pas, dfm,
xfm, rc files

• The dxgettext commandline tool is also able to extract all the resourcestrings from
an executable file on Windows - like .exe files, .dll files etc.

1

Chapter 1. Introduction

• The xgettext commandline tool can scan C and C++ files.

• On Windows, you can right-click a file folder in Windows Explorer and choose
"Extract strings" in the popup menu. From the window that then pops up, you can
scan all types of files that can be scanned with the command line tools mentioned
above.

These scanners are very advanced. They don’t pick up every string they find in a .pas
file - only the strings that are surrounded by calls to gettext() and similar functions.
This means that in this example, the string will not be extracted:

a:=’Hello, World’;
a:=gettext(a);

Actually, the system will give a warning that a is unknown. But in this example, it
will get extracted:

a:=gettext(’Hello, World’);

This means that each single string has to be put in between the () of the function call.
In order to save you some typing, an alias for gettext() has been made, and is named
_(). The above example can there also be written this way:

a:=_(’Hello, World’);

In order to have access to this function, you must include gnugettext.pas in your
Delphi or C++ Builder project. This file is part of the installation.

More gettext functions
Since you can have several mo files, there must be ways to choose between them.
The default setting is to use the "default" domain, which means the file default.mo, if
present. You can change the default text domain using the textdomain() procedure.
You can also ask for a single translation from another textdomain like this:

a:=dgettext(’languagenames’,’Danish’);

Here, the string "Danish" will be looked up in languagenames.mo, and if it exists, the
translation will be assigned to a. If no translation exists, or if the languagenames.mo
file doesn’t exist for the current language, the string "Danish" will be assigned to a.

If you want to use a special language, you can switch the default language using the
UseLanguage() procedure, which takes the two-letter language code as parameter:

UseLanguage (’da’); // selects Danish

You can also specify a language and a country using the two-letter language and the
two letter country code like this:

UseLanguage (’en_US’); // selects American English

The default is to use the language setting in Windows or Linux.

Resourcestrings
If you have tried the Integrated Translation Environment of Borland Delphi, you will
know about the resourcestring keyword. It works like this:

resourcestring
msg=’Hello, World’;

2

Chapter 1. Introduction

begin
ShowMessage (msg);

end.

Delphi automatically replaces the reference to msg with a call to the system function
LoadResString() , which retrieves the string "Hello, World" from the resource part
of the executable. The Delphi ITE achieves its translation mechanism by redirecting
these fetches to other files.

By including gnugettext.pas in your project, these fetches are replaced with another
function, which translates all the strings. The default is, that resourcestrings are trans-
lated using the default textdomain, i.e. default.mo. In case you want the system to
search other mo files, if the translation isn’t found in default.mo just make some calls
to the AddDomainForResourceString . It is very common to have the Delphi runtime
translation in a file named delphi.mo, and this line in the .dpr file to make sure that
the Delphi runtime is translated:

AddDomainForResourceString (’delphi’);

Using resourcestring is not recommended, because Delphi only handles ansistring
this way - not Unicode. But it works.

Forms
It would not be practical to use _() function calls to assign all strings used in a form.
If a string has 200 translatable strings, you would have to type 200 lines of code
that assigns strings. Therefore, a procedure named TranslateComponent was cre-
ated. This procedure translates all string properties of a specified component, and all
components owned by this component. You can use this to translate an entire form
by putting this line into the OnCreate event of a form:

procedure TMyForm.FormCreate (Sender: TObject);
begin

TranslateComponent (self);
end;

This single function call replaces lots of _() function calls, which is nice. And since the
strings are put into dfm files, which are already extracted, everything works perfectly,
except that some string properties should not be translated.

A default setting is that the .Name property of TComponents are not translated.
That wouldn’t make much sense, and would break your program. You can
specify additional string properties, that should not be translated using the
TP_GlobalIgnoreClass and TP_GlobalIgnoreClassProperty procedures:

TP_GlobalIgnoreClass(TParam);
TP_GlobalIgnoreClassProperty(TField,’FieldName’);

In this example, no TParams will be translated at all, and the Fieldname property
of TField objects will not be translated either. These are global settings and should
therefore be placed at a global place in your program. It is recommended to put these
lines into your .dpr file, see the Section called Sample.dpr in Appendix B>. You can
also specify a custom handler for a class like this:

TP_GlobalHandleClass (TSpecialClass,Myhandler);

You can read more about typical ignores in Appendix H>.

3

Chapter 1. Introduction

4

Chapter 2. Action

Localize your first application
Assuming that you have created a simple application in Delphi, this section will show
you how to localize it.

First, you must add gnugettext.pas to your project. It is recommended to copy this
file to your project directory, making it part of your application.

In order to translate your forms and datamodules, you must add gnugettext to the
uses-clause of all units that have a form or datamodule, and put this line into the
OnCreate event of your forms and datamodules:

TranslateComponent (self);

In this line, self refers to the form or datamodule to which this event belongs. The
TranslateComponent procedure then translates all string properties of all compo-
nents on the form or datamodule. Please note that all subcomponents are translated
- for a TDataset component this includes the TField subcomponents etc.

Unfortunately, some string properties will raise an Exception or create unwanted
side effects if they are translated. For instance, if you translate the IndexFieldName
property of a TClientDataset to something that is not the name of an index, it will
raise an Exception. In order to instruct the TranslateComponent procedure that it
should not translate certain string properties, you should add procedure calls like
the ones specified in Appendix H> just before the TranslateComponent(self) call
in your main form or in the .dpr file. You can see the source code for a small, localized
application in Appendix B>

Now, you must ensure that all strings inside your source code are translated properly.
If you have a line like this:

ShowMessage (’Hello, World’);

Then you must add _() around the string, like this:

ShowMessage (_(’Hello, World’));

Now your program is internationalized, but it hasn’t been localized, yet. This means
that your program can run in another language, if a translation would be present, but
we didn’t make a translation, yet. In order to make a translation, we have to get a list
of messages first.

Figure 2-1. Explorer integration of string extraction

5

Chapter 2. Action

In order to get this list, click with the right mouse button on the file folder that con-
tains your Delphi source code, and choose "Extract translations to template", just as
you can see it in Figure 2-1>.

This will create a file named default.po with all the texts to be translated. Because it
has no translations in it, it is named a "translation template". You should download
poEdit1 and use this program to translate the messages in the po file.

When you have translated the po file, click with your right mouse button on the
filename in the Windows Explorer, and choose "Compile to mo file". This will com-
pile the po file and generate the binary mo file needed by your application. If your
application is located in c:\my\program\path\myprogram.exe , you must put the
default.mo file in c:\my\program\path\locale\##\LC_MESSAGES\default.mo . In
this path, ## represents the two-letter language code that you can find in the Section
called ISO 639 language codes in Appendix F>.

That should be it - your application now uses the translation when the Windows
settings corresponds to the two-letter language code that you chose.

New program versions, old translation files
After you have made your first translation, you will find that your old translation file
needs to be updated for this new version. This is the procedure:

Extract strings from the new source code. The po file that was generated by this, is
called the "template", because it determines which messages that the final translation
must contain. You can then update the old translation file to the new translation tem-
plate using the merge functionality. Linux users have to use the msgmerge program.
Windows users both have a command line tool, but can also click with the right
mouse button on the old translation file in Windows Explorer and choose "Merge
template". Here, you can pick the template file and do the merge.

The result is a file that contains the messages of the template, with the automated
comments from the template and the translations from the translation files.

Since the string extraction tools always extract in the same order, and since the merg-
ing will preserve the order from the template, po files are very suitable to be stored
in source code version control systems like CVS, FreeVCS, SourceSafe, PVCS, Team-
Source etc. Just make sure that you merge with the template before putting a new
copy into the version control system.

Create a single language application with localized runtime library
A typical problem with Delphi is to create a program in a non-English language,
because the runtime library is in English. You can easily put a chinese caption on a
button, but you cannot easily make the "Division by zero" message turn chinese, be-
cause that message is hidden deeply in the Delphi runtime library. With GNU gettext
for Delphi, you can easily solve this problem:

1. Install GNU gettext for Delphi

2. Add gnugettext.pas to your project.

3. Get the default.po file for the Delphi runtime libraries and translate it to your
language. Maybe there is already a translation for your language online2.

4. Compile the default.po file to a default.mo file by clicking on it with the right
mouse button and choose "compile to .mo file".

5. Create a locale\LL\LC_MESSAGES subdirectory to where your exe file is, where
LL is the two letter ISO 639 language code (see the Section called ISO 639 lan-
guage codes in Appendix F>) of the language that your program uses (da for
danish, de for german etc.) and put your default.mo file there.

6

Chapter 2. Action

6. Give your translations to us, so that other people may use your translation.

In order to have one .exe file that contains everything, including the translations,
you can now click with the right mouse button on the executable, and choose
"Embed translations". This will append the default.mo file, that is in the
locale\LL\LC_MESSAGES subdirectory into the .exe file. Please note that you have
to do this every time that you have compiled and generated a new .exe file.

Uses clauses
The order, with which Delphi executes the initialization sections of your units depend
on the order that the units are included in your application. A typical application has
a .dpr file that looks like this:

program Project1;

uses
Forms,
Unit1 in ’Unit1.pas’ {Form1};

{$R *.res}

begin
Application.Initialize;
Application.CreateForm(TForm1, Form1);
Application.Run;

end.

Here, the initialization section of the Forms unit will be executed before the initializa-
tion section of the unit named Unit1 . All units that are used by the Forms unit will
also have their initialization section executed before the section of Unit1 .

Not all units have an initialization section, but the gnugettext.pas file does. It de-
tects the language, starts the resourcestring translation etc. Therefore, all resources-
trings, that are fetched before this intitialization section has been run, will not be
translated, but all that are fetched afterwards, will. If you include the DBClient unit,
and this unit fails to initialize because there is no MIDAS.DLL , then it will show an
error message in English if gnugettext was later in the uses list, but it will show it in
the local language if gnugettext was first.

A translated application’s .dpr file could look like this:

program Project1;

uses
gnugettext in ’gnugettext.pas’,
Forms,
Unit1 in ’Unit1.pas’ {Form1};

{$R *.res}

begin
// Add extra domain for runtime library translations
AddDomainForResourceString (’delphi’);

// Force program to use Danish instead of the current Windows settings
UseLanguage (’da’);

// Put ignores on the properties that cannot be translated
TP_GlobalIgnoreClassProperty (TMyComponent1,’property1’);
TP_GlobalIgnoreClassProperty (TMyComponent2,’property2’);
TP_GlobalIgnoreClassProperty (TMyComponent3,’property3’);
TP_GlobalIgnoreClassProperty (TMyComponent4,’property4’);

7

Chapter 2. Action

Application.Initialize;
Application.CreateForm(TForm1, Form1);
Application.Run;

end.

This works very, very well for most situations, but if you want translations to start as
early as possible, your .dpr file should look like this:

program Project1;

uses
gnugettext in ’gnugettext.pas’,
gginitializer in ’gginitializer.pas’,
Forms,
Unit1 in ’Unit1.pas’ {Form1};

{$R *.res}

begin
// Put ignores on the properties that cannot be translated
// These just have to be placed before the first call
// to TranslateComponents()
TP_GlobalIgnoreClassProperty (TMyComponent1,’property1’);
TP_GlobalIgnoreClassProperty (TMyComponent2,’property2’);
TP_GlobalIgnoreClassProperty (TMyComponent3,’property3’);
TP_GlobalIgnoreClassProperty (TMyComponent4,’property4’);

Application.Initialize;
Application.CreateForm(TForm1, Form1);
Application.Run;

end.

In this example, gginitializer sets all the necessary settings in gnugettext.pas . It
could look like this:

unit gginitializer;

interface

implementation

uses
gnugettext;

initialization
// Add extra domain for runtime library translations
AddDomainForResourceString (’delphi’);

// Force program to use Danish instead of the current Windows settings
UseLanguage (’da’);

// Do not put TP_GlobalIgnoreClass* statements here, because
// that would require this unit to use other units than gnugettext,
// and then all these units would have their initialization
// section executed before this one.

end.

In this example, the initialization section of gginitializer will be run before the initial-
ization sections of units like Forms and Unit1 are run.

8

Chapter 2. Action

Solving ambiguities
Sometimes it may happen that the same English message should be translated to two
different messages in another language. A very wellknown ambiguity is the word
"free", which can be like free beer or free speech. For instance, if you have two ra-
diobutton groups describing a piece of software, and the first is about the software
price and the second is about the software type, both may include the choice "free".
The software price "free" would be translated to "gratis" in Danish, and the software
type "free" would be translated to "fri" in Danish.

It is the programmer’s responsibility to ensure, that one msgid only can result in
one translation. Sometimes this fails - and then the translator has to report back that
something has to be changed. There are several ways to solve this

Change words

The first solution is to change the words. Instead of the price option "free" you could
give the option "$0", or you could write "free software" in one of the choices. Do a
brainstorm and pick the best.

Adding spaces

You could add a space to one of the strings. This would give the translations "free"-
>"fri" and "free "->"gratis". Spaces are not visible in a radiogroup. If you use this
technique inside the source code, you may want to remove the space before the space.
In this case, you should provide a comment to the translator that the space needs to
be preserved:

// Preserve the initial space in the translation.
dataset.FieldByName(’Name’).DisplayLabel:=copy(_(’ Name’),2,maxint);

A good translator should always preserve leading and trailing spaces, but sometimes
it is useful to give the translator a hint anyway.

Using domains

In some occasions, the solution to ambiguities can be to use several text domains. In
the case with two radio button groups, you would exclude one of them from Trans-
lateComponent() with TP_Ignore() , and then translate it separately afterwards us-
ing TranslateComponent(MyRadioButtonGroup,’separatedomain’); .

Using trailing comments

Some people using trailing comments to include a comment within the msgid:

function stripafterdot(s:widestring):widestring;
var

p:integer;
begin

p:=pos(’.’,s);
if p <>0 then

s:=copy(s,1,p-1);
Result:=s;

end;

myfield.DisplayLabel:=stripafterdot(_(’Name.Displaylabel for the field named "name"’));

This solution requires the translator to know about this notation.

9

Chapter 2. Action

Plural forms
The ngettext() function is a very powerful function for handling plural forms. In
order to understand this function, you should first understand the gettext() func-
tion in the Section called function gettext(msg:widestring):widestring; in Appendix A>.

A well known problem is to specify the number of files in a list of filenames. With
this function, it can be done like this:

LabelCount.Caption:=format(ngettext(’%s file’,’%s files’,filelist.Count),[filelist.Count]);

If no translations are available, the ngettext() function will return ’%s file’
if filelist.Count=1, and it will return ’%s files’ otherwise. The format() function
will then put the actual number of files in place of the %s, and the result will be
something like ’0 files’, ’1 file’, ’2 files’, ’3 files’ etc.

If you would want to translate this to french, the entry in the po file should look like
this:

msgid "%s file"
msgid_plural "%s files"
msgstr[0] "%s fichier"
msgstr[1] "%s fichiers"

The idea with ngettext is, that it doesn’t just translate "%s file" to "%s fichier", but it
takes into account, that the french use numbers differently. The English say "0 files",
but the french use singular to describe the value zero: "0 fichier". So in the above
example, the french version would be: ’0 fichier’, ’1 fichier’, ’2 fichiers’, ’3 fichiers’...

Some languages are even more complicated. In Polish, there are three plural forms,
and the translation would look like this:

msgid "%s file"
msgid_plural "%s files"
msgstr[0] "%s plik"
msgstr[1] "%s pliki"
msgstr[2] "%s plikÃ 3w"

When counting files, it will become: ’0 plikÃ3w’, ’1 plik’, ’2 pliki’, ’3 pliki’, ’4 pliki’, ’5
plikÃ3w’. Confused? Don’t be. Just use ngettext() wherever your text depends on
a number, and the translator will provide the correct translations.

Not all tools handle msgid_plural well: Please note, that not all tools handle ms-
gid_plural well. This includes poEdit and KBabel. If a po file contains msgid_plural trans-
lations, you should use a text editor to edit it/translate. A good text editor for po files is
UniRed3.

How does it work?: The ngettext and dngettext functions use gettext(singular+#0+plural)
to get a #0-separated list of plural forms.

Because some tools don’t handle msgid_plural forms well, you should put all plural
forms translations into a separate po file. You can do this using dngettext() , which
is equivalent to ngettext() except that it takes a text domain name as first parame-
ter:

LabelCount.Caption:=format(dngettext(’plurals’,’%s file’,’%s files’,filelist.Count),[filelist.Count]);

In this case, the source code string extraction will put the translation into a file
named plurals.po , and the dngettext() function will retrieve the translations
from plurals.mo . You can then ask the translator to use notepad to translate the

10

Chapter 2. Action

plurals.po file. Notepad is not always very handy, but it’s surely compatible with
the msgid_plural notation.

Database applications

Preventing unwanted translations

When you create a database application, there will be a lot of component properties
that you don’t want to be translated when using Translatecomponent() . Typically,
the field names, table names and even database names of a database have meaningful
translations, and the translation file from the translator may include translations for
field names. Also, SQL statements should not be translated. They will get extracted,
but if the translator modifies them, it would most likely break your program if this
translation would be applied.

Therefore, it is very important, that you consult Appendix H> to see what ignores
you should add to your application. Make sure that these ignores are executed before
the first call to TranslateComponent() . The list in that appendix may not be com-
plete - especially not if you use database components that are not mentioned. There-
fore you must have a look at your components and make sure, that all properties, that
should not be translated, have a corresponding TP_GlobalIgnoreClassProperty()
call.

DisplayLabel property explained

Delphi is very good for creating a single-language database application, fast, if the
application only needs one language. A typical single-language application uses field
names that are easily understood, like "Name", "Address" etc. Let’s assume that you
use a query component with an SQL statement like this:

select * from customer order by Name

In this case, the name of the Namefield of the customer table will propagate through
all components, will become the column heading of a TDBGrid etc. Your grid column
for names will read "Name". This is desired in an English language application, but
absolutely not in all other languages.

The solution is to modify the .DisplayLabel property of the TField components,
that your dataset possesses. Every TDataset descendant has a .Fields[] property
that refers to the fields in the dataset, and all these field components are descendants
of TField , which has the TField.DisplayLabel property.

Delphi provides two ways to modify this DisplayLabel property: At runtime and at
design time, which leads to two different ways of handling the localization of it.

Setting displaylabel at runtime

The runtime assignment solution is to assign a displaylabel at runtime like this:

procedure TForm1.Query1AfterOpen(DataSet: TDataSet);
begin

Dataset.FieldByName(’Name’).DisplayLabel:=_(’Name’);
end;

This way, the field names are always the same in the database and the entire appli-
cation, but the user will see a localized name. This works for all dataset type compo-
nents, including table components, TClientDataset etc.

11

Chapter 2. Action

Display label at design time

Creating design-time DisplayLabel properties goes like this:

• Double-click the dataset component. This brings up the field list window.

• Click with your right mouse button on the field list window and choose "Add all
fields". This requires your dataset to be able to actually fetch data from the database
at design time, but will add all the fields of the dataset to the field list window.

• Make sure that the form (or datamodule) that the dataset component is on, is trans-
lated using TranslateComponent() before the dataset is opened. This means that
the dataset needs to be closed by default, and that you have to open the dataset at
runtime using .Open or .Active:=True .

By doing this, the field names will be present in the DFM files, and will therefore
be extracted for the translator to be translated. Now, TranslateComponent() will
translate the TField.DisplayLabel values:

procedure TForm1.FormCreate(Sender: TObject);
begin

TranslateComponent (self);
Query.Open;

end;

Multiple field name translations

Sometimes it is very handy to have field names translated to something else than
what you put into the .DisplayLabel property. For instance, you may want to have
a short version for exported ASCII files, another version for exporting XML files, one
version for reports, and again another version for the .DisplayLabel property.

This is easily done by using several po files (which is the same as multiple text do-
mains). The part of your program that writes a column header to an ascii file might
look like this:

write (mytextfile,dgettext(’fieldnames’,myfield.FieldName));

This will find the field name in the fieldnames.mo file and output the translation.
The fieldnames.po template can be written by hand (using notepad), or sometimes
be extracted from a datamodule. Often, the number of field names is so low that the
quickest solution is to write the po file by hand.

Translation repositories
It is often very useful to create one po file that has all the translations from all other
po files included. For instance, if you are the producer of software for chemical lab-
oratories, and you have 5 different products, there will probably be a lot of common
translations for the different products, and it would save you a lot of work if you
don’t have to translate it all again for each new product.

In order to merge several po files, you can use the msgcat tool:

C:\translations\da >msgcat -o result.po -t utf-8 --use-first delphi7.po kylix3.po

C:\translations\da >

This set of parameters will put the result into result.po , use utf-8 encoding, and
only take the first translation from each po file.

12

Chapter 2. Action

Notes
1. http://poedit.sf.net/

2. http://dybdahl.dk/dxgettext/translations/

3. http://unired.sf.net/

13

Chapter 2. Action

14

Chapter 3. Project management

Introduction
Localizing an application is not a simple task. In Germany, the first floor is the first
one above ground. In USA, it’s at ground level. How do you put that into a database?
If you make an integer field named floor that contains 0 for ground level and 1 for
the first floor above ground, it is very easy to understand in Germany, but you’ll have
to modify the user interface quite a bit to make the same data accessible by Americans
in a way that they understand easily.

The GNU gettext system only helps you with translating messages, but this can go
wrong, too. For instance, the Math unit in Delphi has functionality to convert be-
tween different units. The names of these units can be translated, but if you translate
two unit names to the same thing, all programs that use the Math unit will generate
an exception during initialization. Actually, this already happened. The first Danish
translation of the Borland Delphi 7 runtime library had "Hektar" as the translation for
both "SquareHectometers" and "Hectares". It’s the same thing, and the correct word
is "Hektar", so why not use it? Now that the program doesn’t work, whose fault is it?

The answer is very simple: It’s the programmer’s fault. He didn’t live up to the re-
sponsibility of ensuring that the translator couldn’t do anything to break the pro-
gram. It might take unnecessary extra programming to ensure this, but it can be very,
very difficult to debug the program if this is not ensured.

Let’s take another example: The translator translates the application, but the users
cannot find out how to operate the program. The English version works well and
users know how to operate the English version. Whose fault is this?

Here, the answer is more complex: it might be the translator that made a bad transla-
tion, but it could also be the programmer that designed a user interface that is hard
to translate. Often, user interfaces use concepts that can be described with one word
in the programmer’s own language, but if it takes 10 words to describe the same
concept in another language, people that only know that other language might not
understand the concept. For instance, zip-files could be represented by a zipper in
English (Windows XP does that), but in other languages thsi relationship makes ab-
solutely no sense. In Danish, zip-files are named "zip-filer", and zipper is "lynlaas".
There is absolutely no relationship between "zip-filer" and "lynlaas", and whoever
invented that icon definitely didn’t think of internationalization.

The leader of an internationalized project has to:

• Ensure that all programmers understand the concept of internationalization.

• Ensure that translators can give feedback to the programmers in order to ensure
that everything is localizable.

• Ensure that there is a release procedure with beta-testing for each language. Hav-
ing debugged the program in one language doesn’t mean that it is bugfree in other
languages, too.

• Ensure that the beta-testers know, that they must give feedback on the translation,
too.

Coordinating translations
Besides having programmers and translators, it is very important that somebody
is appointed to manage the localization process. This person must ensure correct
archiving of translations and other po files, and ensure that the translations are tested.
Typically, this assignment is given to a programmer with localization knowledge.

15

Chapter 3. Project management

The translator
It can be difficult to find a good translator. A good translator understands the appli-
cation, the local market and is good at finding translations for concepts that maybe
doesn’t make a lot of sense in the native language. It is also important that multiple
applications are translated the same way.

There are many small companies out there that have specialized in translating soft-
ware. Use one of those - it pays off. One of the good things about GNU gettext for
Delphi, Kylix and C++ Builder, is that the file format is standardized and known by
most translation companies.

16

Chapter 4. Experienced programmers’ topics

Determinism and responsibility
It is very important for the software development process, that the programmer de-
cides, what gets translated, and what doesn’t. Also, it is important for the program-
mer to ensure, that the translator cannot break the application, no matter how bad
the translations are made.

GNU gettext is based on function calls (gettext, dgettext etc.), comments to the trans-
lator and a proper localization release procedure.

The system doesn’t translate anything that isn’t put through the dgettext() function
in a way or the other. The programmer fully controls what gets translated, and what
doesn’t, and has the responsibility to ensure, that everything that gets translated, can
be translated to virtually anything without breaking the program. For instance, if the
caption of a label on a form is made translatable by the programmer, the translator
can only change the look of the label. But if the component name of a label would
be translatable, the translator could break the program by translating the name of a
label to something that is already the name of another component.

In order to get a program translated, the programmer must provide information to
the translator about what gets translated and where to find it. He also needs to en-
sure, that the texts are unambigious, that one msgid cannot be translated into two
different things in another language. Since it may not always be clear to the transla-
tor, in which context a message is used, the programmer can provide comments to
the translator, even access to the source code locations, if the translator is able to read
source code. The comments should also make the translator able to run the program
with his/her translations, and find the place where a particular text can be found
inside the program.

The translator is often also a beta-tester for a specific language. The translator is often
the only one that is able to control the program while running in the other language,
and is often also the only one internally in the organization that is capable to see if
labels are put correctly, translations are made correctly etc. GNU gettext helps out
here by making the translator able to apply his or her translation without involving
the programmer.

Text domain management
Different text domains are basically different po files. Usually, one application uses
one text domain, but often, several applications share one text domain. Sometimes it
is necessary to use an extra text domain for a special purpose.

As a project leader, it is important to know, that you can always easily split a project
into two parts. The key is to create two template files instead of one. Just merge the
old translation file with the new templates, and you have two new, smaller transla-
tion files.

It is a bit trickier to assemble two smaller subprojects into one big translation project
with just one file. There might be messages, that were translated differently in the
two projects, and this has to be taken care of. Several tools can assemble two po files,
and these include msgcat and msghack . See Appendix D> for more information.

The better alternative to resourcestring
Instead of using resourcestrings, there is a better alternative:

ShowMessage (_(’Action aborted’));

17

Chapter 4. Experienced programmers’ topics

The _() is a pascal function inside gnugettext.pas, which translates the text. It re-
turns a widestring, unlike resourcestring, which is limited to ansistring. You can
use _() together with ansistrings as you like, because Delphi automatically converts
widestrings to strings when needed. Another benefit of this is that you can write
comments, that the translator can use to make better translations:

// Message shown to the user after the user clicks Abort button
ShowMessage (_(’Action aborted’));

You can also write the comment in the same line:

ShowMessage (_(’Action aborted’)); // Message to user when clicking Abort but-
ton

But only the // style comment is supported - you cannot use { } or (* *) comments for
this purpose.

Good comments normally lead to good translations. If the translator has a copy of the
source code, poedit and kbabel can both show the location in the source code to the
translator. This makes sense with _(), because the translator might get a good idea,
what this is about, even if the translator isn’t a programmer.

In other words, there are many reasons to use _() instead of resourcestrings. If you
create a new application, don’t even think about resourcestrings - just go directly for
the _() solution.

Debugging
You will typically experience two types of errors:

• Something is not translated

• An error occurs when using TranslateComponent()

The first item often happens because the translation files (.mo files) are not present for
the current language, not placed where they are expected to be etc. The second occurs
because a property of some component should not be translated. When possible, you
should get an Exception that is easy to understand, but sometimes you don’t. This
section is about finding the error anyway.

The gnugettext.pas file has a logging system for debugging built-in. You activate
it by defining the conditional define DXGETTEXTDEBUG. You can also find the first oc-
curence of this string in gnugettext.pas - here you will find the following code:

// DEBUGGING stuff. If the conditional define DXGETTEXTDEBUG is defined, it is ac-
tivated.
{ $define DXGETTEXTDEBUG}
{$ifdef DXGETTEXTDEBUG}
const

DebugLogFilename=’c:\dxgettext-log.txt’;
{$endif}

One way to activate the debugging log is to change

{ $define DXGETTEXTDEBUG}

to

{$define DXGETTEXTDEBUG}

by removing the space. As you can see, you can also here modify the location where
the log-file is written to.

18

Chapter 4. Experienced programmers’ topics

The log-file contains a lot of information. At the beginning, you will find very useful
information about what settings the system uses:

Debug log started 21-08-2003 10:32:08

UseLanguage(”); called
LANG env variable is ”.
Found Windows language code to be ’da_DK’.
Language code that will be set is ’da_DK’.
Plural form for the language was not found. English plurality system assumed.

Text domain "default" is now located at "C:\source\sf\dxgettext-devel\dxgettext\sample\locale\"
Changed text domain to "default"
Globally, the NAME property of class TComponent is being ignored.
Globally, the PROPNAME property of class TCollection is being ignored.
Extra domain for resourcestring: delphi
Globally, class TFont is being ignored.

In this example, we can see that the program was running on a Danish language Win-
dows, which uses the same plurality system as English. It also tells us where it will
look for .mo files, and what ignore settings were specified. When TranslateCompo-
nent() is used, it looks like this:

==
TranslateComponent() was called for a component with name FormMain.
A retranslator was created.

-
TranslateProperties() was called for an object of class TFormMain with do-
main "".
Reading .mo data from file ’C:\source\sf\dxgettext-devel\dxgettext\sample\locale\da_DK\LC_MESSAGES\default.mo’
Found in .mo (default): ""- >"Project-Id-Version: PACKAGE VERSIONPOT-Creation-
Date: 2003-02-16 21:36PO-Revision-Date: 2003-02-17 23:01+0100Last-Translator: Lars B. Dyb-
dahl <lars@dybdahl.dk >Language-Team: <>MIME-Version: 1.0Content-Type: text/plain; charset=UTF-
8Content-Transfer-Encoding: 8bit"
GetTranslationProperty(CONTENT-TYPE:) returns ’text/plain; charset=UTF-
8’.
Found in .mo (default): "GNU gettext sample application"- >"GNU gettext eksempel"
Found in .mo (default): "Click me"- >"Klik mig"
Found in .mo (default): "Click me"- >"Klik mig"

-
This is the first time, that this component has been translated. A re-
translator component has been created for this component.
==

The log simply specifies exactly the filename from which translations are fetched,
and it also specifies exactly, which strings are translated to what using which text
domain. The "retranslator component" is a component that is added to the form to
make it remember the untranslated properties, in case you want to do a language
switch at runtime.

The first time that the application wants to translate an "OK" button, it looks like this:

Loaded resourcestring: OK
Translation not found in .mo file (default) : "OK"
Reading .mo data from file ’C:\source\sf\dxgettext-devel\dxgettext\sample\locale\da_DK\LC_MESSAGES\delphi.mo’
Found in .mo (delphi): ""- >"Project-Id-Version: Delphi 7 RTLPOT-Creation-
Date: 2003-03-02 18:54PO-Revision-Date: 2003-03-03 00:31+0100Last-Translator: Lars B. Dyb-
dahl >lars@dybdahl.dk <Language-Team: Dansk >da@li.org <MIME-Version: 1.0Content-
Type: text/plain; charset=UTF-8Content-Transfer-Encoding: 8bit"
GetTranslationProperty(CONTENT-TYPE:) returns ’text/plain; charset=UTF-
8’.
Found in .mo (delphi): "OK"- >"O.k."

19

Chapter 4. Experienced programmers’ topics

Here you can see, that it first searches default.mo for a translation, but doesn’t find
one. Because it’s a resourcestring translation, and because we specified the "delphi"
textdomain to be searched for resourcestrings, it decides to try out delphi.mo. This
file has not been opened, yet, and therefore the file is opened at this point, and the
full filename is written to the log file. The first action when opening a new .mo file is
to check wether the Content-Type is set to use utf-8. Once it found out that this is the
case, it looks up "OK" in the delphi.mo file, and finds the Danish "O.k." translation.

Log-files can be huge if your program runs for a long time. If that happens, load
the logfile into an editor that is capable of handling huge files, and search for the
keywords that you saw in this section.

If your program breaks because a string property is translated that shouldn’t, try to
search for the Exception error message in the log file (error messages are translated,
too, and are also mentioned in the log file). The last translation mentioned before that
error mesage is probably the one that made your program fail.

When you have identified a property that should not be translated, you
can either specify it globally that it should not be translated, by calling
TP_GlobalIgnoreClassProperty() , or you can disable it only for the next call to
TranslateComponent() using TP_Ignore .

Directives
It is possible to control the string extraction from Pascal source code using direc-
tives, very much like the compiler directives. Currently, the directives only support
extraction of string constants defined using the const keyword, into a specified text
domain:

{gnugetext: scan-all [text-domain=’domain name’] }
.
. in this section the string constants will be extracted
.
{gnugettext: reset }

{gnugettext: scan-all } is named the ’start directive’ in this document.
{gnugettext: reset } is named the ’end directive’ in this document.

If a start directive exists, the end one must exist in the same file. The directives are
local to a file. Several start directive can exists before the end one and is used to
change the target domain. This directive actually works for constants only! Initial-
ized variables are not taken in care. The domain name, if present, must be enclosed
by single quote. If the domain name include a single quote (but remember that the
domain name will becomes a file name), it must be doubled. There are no check on
the domain name. It is assumed that you know what you type!

{gnugettext: scan-all text-domain=’toto’ }
Const

a = ’toto’;
{gnugettext: scan-all text-domain=’titi’ }

b = ’titi’;
{gnugettext: reset }

Example:: In this example, the msgid ’toto’ will be put into toto.po and ’titi’ will be put
into the file named titi.po .

It is the plan to extend the directive system in the future to disable/enable string
extraction etc.

20

Chapter 5. Advanced topics

Migrating from the ITE to dxgettext
This chapter was written by Peter Thornqvist.

Introduction

Although I’ve been somewhat involved in the development of dxgettext - mainly
donating a couple of tools to convert translations from ITE to dxgettext - I had not
myself been ready to take the final step in moving any larger application over. It was
both a matter of lack of time but also a hesitation about the usefulness of the po file
format and the possible loss of information.

Well, one day the ITE gave up on me (for the umpteenth time) and I just couldn’t get it
to compile my project anymore. It complained about "ancestor not found". Checking
out the files from VCS and even going back in history didn’t solve it. I was stranded
with a non-compiling project and I had no solution how to get it to work again.

It was time for me to get down and dirty with dxgettext and this is the report on how
I did it, what I had to change and how it all worked out in the end.

The project

The application I am going to migrate is called EQ Plan and is a graphical planning
tool mainly for manufacturing companies (see http://www.timemetrics.se/ for de-
tails and trial downloads). As far as localization is concerned, this is a mid-sized
application consisting of about 45 forms, 5 or so frames (I avoided frames since I
knew the ITE didn’t like them) and about 10-15 additional files. Since I was using the
ITE, all strings (except property values) were declared as resourcestrings and most of
them was located in a single unit. Additionally, the application uses a wide variety
of components and controls; some third-party components from JVCL and KWizard
and a couple of custom made components (like the Gantt-chart and a VS.Net style
treeview). The application is not Unicode enabled, limiting it’s usability to western
Windows versions. All string in the program are in English and we have translated
it to Danish and Swedish. Translation to Norwegian and German is planned but not
started (as of this writing), making this a good time to do the change.

Planning

I didn’t do much planning because the task was pretty straightforward but I at least
made the following to-do list:

• Isolate any remaining strings used in the program and convert them to resources-
tring. Since I already used resourcestrings and the program isn’t Unicode anyway,
I decided to stick with resourcestrings, although I probably would have used the
_() syntax if this had been a new program (see the dxgettext documentation for an
explanation of "_()")

• Extract any existing ITE translations from the dfn and rc files in the language sub-
folders.

• Since all forms already inherited from a common ancestor, I decided to use this
ancestor to implement as much as possible of the basic translation functionality
and add any special handling in each derived form or utility unit as needed.

• After successfully moving the translation, find all components and/or units that
have untranslated strings even when running a localized version of the program.

21

Chapter 5. Advanced topics

Add special handling of the components as necessary and add any missing strings
as resourcestrings.

• Since gnugettext doesn’t localize component bounds (top, left, width, height), go
through all forms and check that texts and label alignments and the like looks good
in all languages.

• Create installation packages for the language file(s).

• Implement a language switch functionality inside the program so the end-user eas-
ily can change the used language.

• Test the new translations on as many systems as possible, i.e. different Windows
versions as well as different language versions of Windows.

Tools I needed (and used)

There are several tools I need to be able to migrate my application. Specifically, I used
the following:

• dxgettext (or actually the shell integration) to extract strings and properties from
the application sources to create the template po file

• dfntopo (include din dxgettext distribution) to extract the translations from the dfn
and rc files and update the language specific po file.

• poEdit (http://poEdit.sourceforge.net/) to view the po files, provide additional
and compile the mo file (the binary translation file)

Doing the conversion

I started with extracting the po template from my source folder: I right-clicked on
the source folder and clicked on "Extract translations to template". A file named de-
fault.po was created in the selected folder and it contained all the original strings
found by dxgettext. Since there were a lot of strings, there was no way I could deter-
mine how successful dxgettext had been. I just had to trust it for the time being. One
thing that I didn’t do at this stage (because I wasn’t aware of it) but that I recommend
you to do is this: Run the msgmkignore.exe on the default.po file. This will create a
new file 8typicaly named ignore.po) with all the strings that probably shouldn’t be
in default.po. This is strings like numbers, component names, font names etc. It does
an amazingly good job too: all the strings it found in my sources were such that I did
actually want to remove them. To actually remove the strings from default.po, I ran
the command line tool mskremove.exe. Now the (first) template was ready for use.

Since I now had a template, I needed to retrieve as many of the available translations
as possible from the ITE. I certainly didn’t want to translate all this again. I made
this simple for myself. I copied the dfntopo.exe program along with the default.po
file into each of my ITE language folders (where the dfn files are located) and ran
dfntopo.exe from a command-prompt. I used the -f option to force dfntopo to add
all new translations that it couldn’t find in the po file. Although this will probably
reinsert the items we just removed with msgremove, I wanted to make sure that all
the translations I had, made it over into the po file. I can always run msgremove again
at a later time.

So, I now have a default.po in Danish and one in Swedish. I also have the template
default.po file (the one without any translations) in the original source folder. This
means that I am now actually ready to test the translations with gnugettext and this
after only about an hours work! Of course, I still have to enable my application to
read the translations and this is a three step process:

22

Chapter 5. Advanced topics

• Create the correct subfolder structure for my application folder and put the trans-
lated default.po files there.

• Open each po file with poEdit and save it to create the mo file.

• Add gnugettext.pas to my application so it can read the mo file (almost) automati-
cally

The subfolder structure on my machine looked like this after I’ve added the Swedish
and Danish folders:

Each of the translated default.po files are located in the language specific
LC_MESSAGES folder. As you can see, the folder structure is somewhat convoluted
and uses some predefined language identifiers (these names are actually standard
ISO639 identifiers, sometimes combined with ISO3166 country abbreviations) to
enable gnugettext to automatically select the correct language file (this is based
on the users current locale). I suppose one could modify gnugettext.pas to, as an
example, place all the language files in one folder and call them se.po, da.po etc
instead but I decided to use the default settings. If the po/mo files are correctly
placed and it still doesn’t work at run-time, at least I know that it’s something else
that isn’t working.

Now I could open and save the po files with poEdit. This creates an mo file - a com-
piled binary version of the po file - in the same folder as the po file and it’s actually
this file that gnugettext needs. The po file is only used to allow humans to read and
edit the content. Now I was ready to edit my project to read the translations.

I had some errors when I opened the po files with poEdit: TABS (#9) had been trans-
lated to \x9\ but poEdit expected \x9 and embedded double-quotes weren’t prop-
erly escaped (should have been \" instead of just "). The quote escaping I fixed by
modifying the source of dfntopo and the \x9\ problem I fixed manually by doing a
search and replace on the po files.

Common ancestor forms are good!

Since all my forms already had a common ancestor form (a good coding practice, by
the way: you loose nothing and can gain a lot), I decided to add as much gnugettext
functionality to that form. The other forms would then inherit the behavior and I
would have to add the code everywhere. Additionally, any new forms I decide to add
in the future will also have the functionality automatically. So I added the following
overridden AfterConstruction code to my ancestor form:

var
AlreadyDone:boolean = false;

procedure TfrmGnuGT.AfterConstruction;
begin

inherited;
if not AlreadyDone then

23

Chapter 5. Advanced topics

// this should only be done once for the whole app
begin

TP_GlobalIgnoreClassProperty(TAction,’Category’);
TP_GlobalIgnoreClassProperty(TControl,’ImeName’);
TP_GlobalIgnoreClassProperty(TControl,’HelpKeyword’);
TP_GlobalIgnoreClass(TMonthCalendar);
TP_GlobalIgnoreClass(TFont);
// TP_GlobalIgnoreClass(TStatusBar);
// TP_GlobalIgnoreClass(TWebBrowser);
// TP_GlobalIgnoreClass(TNoteBook);
// TP_GlobalHandleClass(TCustomTreeView,HandleTreeView);
// TP_GlobalHandleClass(TKWizardCustomPage,HandleWizardPage);
AlreadyDone := true;

end;
TranslateComponent(self,’default’);

end;

The AlreadyDone variable is needed because this code will be called for each form in
the application and gnugettext raises an exception if the TP_GlobalXXXX functions
are called more than once for the same class. Personally, I think this is unnecessary.
There is no risks involved adding these call many times as the class or property is
to be ignored anyway. But since repeated calls to TP_GlobalHandleClass class should
generate an exception in my opinion, I would still need the AlreadyDone variable, so
this is no big issue with me.

The TranslateComponent call is the one doing all the magic: this function iterates
all the components on the form and all it’s subcomponents, hunting out published
properties that can be translated. If a property is found, it searches the mo file for a
translation and uses RTTI to change the property value (if it isn’t read-only). Actu-
ally, there is another piece of hidden magic working for us as well: remember that I
use resourcestrings? Well, these are also handled automatically thanks to a dynamic
replacement of the LoadResString function in gnugettext.pas. This replacement func-
tion calls into gnugettext instead of into the resource DLL as the ITE does. Together,
they cover almost everything that can be translated in an application (unless you are
using Unicode in which case resourcestring translation won’t work).

When I ran the program, a lot of the strings were translated but not all. Among other
things, neither menus, treeviews nor all strings in the KWizard we translated. Addi-
tionally, some of the forms I opened generated Access Violations and strange errors.
Something seemed to be amiss and how to fix that is our next priority.

Handling components dxgettext doesn’t handle

If you read the documentation for dxgettext (and you should!), you soon realize that
it doesn’t handle everything that you throw at it. It can handle published properties of
the components passed into TranslateComponent or published properties of compo-
nents owned by that component. If you create components dynamically at run-time
(with Owner set to nil), these components won’t be translated unless you call Trans-
lateComponent explicitly. Additionally, public properties won’t be translated (they
don’t have any RTTI). Some components, like treeviews and listviews, have item list
properties that you need to handle manually by adding your own procedure to ex-
plicitly iterate over the list and use _() to translate them. For a treeview, here’s the
code I added to my base form:

type
THackTreeView = class(TCustomTreView);

procedure TfrmGnuGT.HandleTreeView(Obj: TObject);
var N:TTreeNode;T:THackTreeView;
begin

T := THackTreeView(Obj);
N := T.Items.GetFirstNode;

24

Chapter 5. Advanced topics

while N <> nil do
begin

N.Text := _(N.Text);
N := N.GetNext;

end;
end;

I also had to tell dxgettext that I want to handle treeview translations myself, so I
added a call to TP_GlobalHandleClass in AfterConstruction:

TP_GlobalHandleClass(TCustomTreeView,HandleTreeView);

I also added similar handlers for listviews and the KWizard.

Problems

When running the program, I noticed that some of my menu items weren’t translated
correctly. I use TActionLists exclusively and those items were correctly translated but
the top level menu items (those without actions) weren’t translated. I ran gnugettext
in debug mode and found that it was caused by the menu component(s) having their
AutoHotKeys property set to automatic. I changed this to manual and explicitly as-
signed hot keys (Alt+F, Alt+E etc) to all top level menu items. Since I didn’t want to
regenerate the po, I just added these new strings manually to the po file. Now these
items were also translated correctly.

I also noticed that the color combobox from JVCL that I was using didn’t translate it’s
text captions (the ColorNameMap property). After some searching, debugging and
hair pulling I found a problem in the way the component retrieved the color names,
fixed it (thankfully, I am a developer on JVCL so I can do these things!) and then it
worked like a charm.

Running the program again everything seemed to work fine until I tried to open the
report form: this form uses a TWebBrowser (these are HTML reports and the TWeb-
Browser is used to preview and print them) and I got a nasty Exception telling me
that the StatusText property of the control couldn’t be translated. The error message
also suggested how I should fix the problem (very nice!). Since there is no visible UI
elements in TWebBrowser (except for the main window, which contains nothing to
translate) I elected to add a TP_GlobalIgnoreClass for it and the form then opened
without problems.

Next, I started to work through all my menus, popups and forms one by one to see
if everything was translated and worked as expected. I found that I had some com-
boboxes that lost their stored ItemIndex when they were translated (it was reset to
-1) so I added some code to set these programmatically. Also, I found some items that
hadn’t been translated in the po and I fixed these with poEdit.

Everything seemed to work fine until I tried to open one of the forms: I got an un-
expected AV. I tried to trace the AV but didn’t get too far: the code in gnugettext is
highly recursive making it problematic to find the spot where an error occurs. Since
the form used an "interposer class" - a class declaration that overrides an existing
class, I thought at first that this was the cause of the problem. I tried temporarily re-
moving it but that didn’t help. After some more debugging I finally figured out that
the AV was caused by a TNotebook on the form and after adding it to the ignore list,
the error disappeared. Had I read the documentation a little more carefully, I proba-
bly wouldn’t have had this problem since it mentions notebooks as one component
that causes problems.

The next weird error was with one of my toolbars: suddenly the rightmost buttons
on the toolbar had switched event handlers! I couldn’t believe this at first and had
to check several times to make sure that I was seeing things right. It turned out that
I had a button on the toolbar that was hidden at run-time and this seemed to cause
gnugettext to somehow switch the buttons around, so what I thought was the fifth

25

Chapter 5. Advanced topics

button was actually the sixth according to gnugettext. Since I didn’t really need the
hidden button, I removed it and didn’t investigate it further but it might be some-
thing to be vary of.

Next issue was the KWizard I was using: the button captions and everything on
the pages was translated properly but the Header.Title.Text and Header.SubTitle.Text
were not. I suspect this has to do with the fact that these properties use nested (TPer-
sistent) classes and dxgettext doesn’t handle that. I added a TP_GlobalHandleClass
for TKWizardCustomPage to TfrmGnuGT and got it running fine.

One other oddity in the wizard form was a TStaticText that disappeared when trans-
lated. I checked the debug log from gnugettext and the string was found and trans-
lated but nothing showed up at run-time. At first I thought it had to do with the
anchoring (it was anchored left, bottom) but that wasn’t it. I finally figured out that
it had to do with AutoSize being set to true and setting it to false fixed the problem.
Apparently, the label was resized to zero width when the Caption changed but it was
never resized according to the width of the new Caption.

Conclusion

The whole process of moving an app from ITE to dxgettext can be broken down into
the following steps:

• Get and install the latest version of dxgettext (http://dxgettext.sf.net/)

• Get and install latest version of poEdit (http://poedit.sf.net/)

• Add a form (let’s call it TfrmGnuGT) to your project. Use this form
as the ancestor for all other forms in the application. Override the
AfterConstruction method and add calls to TP_GlobalIgnoreClass,
TP_GlobalHandleClass,TP_GlobalIgnoreClassProperty and to
TranslateComponent as necessary.

• Add gnugettext.pas to the new form’s uses clause. Make sure gnugettext is in your
path or copy it to your project folder.

• Go through all the forms in the project and change their inheritance so they now
inherit from TfrmGnuGT. Add the TfrmGnuGT unit’s name to the forms interface
uses clause.

• In the Explorer, right-click your project folder and select "Extract translations to
template". Your sources are parsed and all found strings are put into a file named
deafult.po

• Double-click the default.po file to open with poEdit. Verify that everything looks
OK. Close it again.

• Copy dfntopo.exe and the default.po into (one of) your ITE language subfolders.
Open a command prompt in that folder and type dfntopo <ENTER> to see the
command-line switches for the tool. Run the tool to extract translations from the
dfn and rc files in the folder. The resulting default.po should now contain at least
some translated strings: open with poEdit to verify.

• Repeat above step for each of your languages

• Create a subfolder structure below your projects output folder for each of your
languages using this format: <root>\<langcode>\LC_MESSAGES\ and put each
of the previously created default.po files into each folder.

• Manually change "\x9\" in the po file to "\x9" and make sure quote characters are
properly escaped.

• Create your own translation handlers for classes like treeviews, listviews and any
third-party that refuses to translate.

26

Chapter 5. Advanced topics

• Disable handling of some classes (like TFont, TWebBrowser and TNotebook), that
obviously shouldn’t be translated or that can cause problems with dxgettext.

I had initially planned to add dynamic switching functionality to the program but
decided against it. Our users don’t really need to switch languages at run-time since
they once and for all deicde which language they want to use and stick with that.

All in all, the migration went better than I had thought. There was some problems
but nothing unsolvable and it took about 4-5 hours to do it from start to finish. In
conclusion, well worth the effort.

Translation statistics
The msgfmt program is able to output some statistics about the contents of a po file:

C:\source\sf\DXGETT~1\TRANSL~1\de>msgfmt --statistics kylix3.po
1815 translated messages, 113 fuzzy translations, 53 untranslated mes-
sages.

Additionally, the msgshowheader tool is able to show the header of a compiled mo
file:

C:\source\sf\DXGETT~1\TRANSL~1\de>msgshowheader kylix3.mo
Project-Id-Version: Kylix 3 German
POT-Creation-Date: 2003-03-02 18:54
PO-Revision-Date: 2003-07-02 17:20+0100
Last-Translator: Sandro Wendt <info@xan.de >
Language-Team: XAN <info@xan.de >
MIME-Version: 1.0
Content-Type: text/plain; charset=utf-8
Content-Transfer-Encoding: 8bit

In order to generate statistics about translations, we just need to be able to create a
web page by iterating over all po files and parse the output from the above programs.
There is a Python5 script in the translations CVS module on SourceForge for this
purpose.

For further information on this topic, ask in our forum6.

Multiple instances
This chapter will contain an explanation of the TGnuGettextInstance class.

Multithreading issues
The procedures in gnugettext.pas are not multithreading safe by themselves. If you
want to create a threadsafe application, you will need to create one TGnuGettextIn-
stance object for each thread and make sure that each thread only uses its own object.

Notes
1. http://www.timemetrics.se/

2. http://poEdit.sourceforge.net/

3. http://dxgettext.sf.net/

4. http://poedit.sf.net/

5. http://www.python.org/

27

Chapter 5. Advanced topics

6. http://groups.yahoo.com/group/dxgettext/

28

Appendix A. API reference

procedure AddDomainForResourceString (domain:string);
The initialization section of the gnugettext unit hooks into several Delphi runtime
functions and replaces those functions. One of the functions that are replaced, is
the function LoadResString, which retrieves resourcestring strings from the resource-
part of the .exe file. The replacement first finds the string from the resource-part of
the .exe file, and then translates it using the ’default’ text domain. You can instruct
the system to search for a translation in other text domains, too, if it isn’t found in
the default text domain, by using this procedure. Simply write this to make LoadStr
search delphi.mo , too, if it isn’t found in default.mo :

AddDomainForResourcestring (’delphi’);

procedure RemoveDomainForResourceString (domain:string);
If a text domain has been added using AddDomainForResourcestring(), you can re-
move it again using this function.

function LoadResString(ResStringRec: PResStringRec): widestring;
This function is 100% identical to LoadResString.

function LoadResStringW(ResStringRec: PResStringRec): widestring;
LoadResStringW is a replacement of the system unit function named LoadResString,
which works exactly the same way, except that the string fetched is translated (if
possible) and the translation is returned as a widestring.

function LoadResStringA(ResStringRec: PResStringRec): ansistring;
This function is identical to LoadResStringW, except that the string is returned using
ansistring. There should be no need for this function - it only exists because this is
exactly the function that is used when the resourcestring keyword is used in Delphi.

var ExecutableFilename:string;
Don’t modify this variable. It contains the full path and filename of the .exe file, if
gnugettext.pas is compiled into an .exe file, and it contains the full path and file-
name to the .dll file, if gnugettext.pas is compiled into a .dll file. This variable is
used to find any embedded translations, if present.

procedure HookIntoResourceStrings (enabled:boolean=true;
SupportPackages:boolean=false);

This procedure lets you control, whether resourcestring retrieval should be translated
automatically or not. The default is to have this enabled, but there may be situations,
where you want to disable it.

Also, this procedure lets you hook deeper into the runtime library, which is needed
when creating packages. Please note, that package support requires you to keep track

29

Appendix A. API reference

of designtime and runtime. You may only call this function with the second parame-
ter set to True during runtime. Setting it to true during design time may make your
package conflict with other packages, that also hook into the runtime libraries.

The problem with packages are, that calling a function from the runtime library
doesn’t call the functions directly - instead it calls into an address, where you will
find a machine code jump to the real function, which can be shared between pack-
ages. When you load and unload packages inside the Delphi ITE, the packages are
sharing runtime libraries. If one package would hook into the runtime library, and
another package does the same, and the packages are unloaded FIFO style, the "un-
hooking" of the runtime library done by last package that is unloaded, will make
your system unstable. It is very important to understand this when creating pack-
ages, because your system might look as if it just works, but it might not work with
your customer unless you do it right.

const DebugLogFilename=’c:\dxgettext-log.txt’;
This is the full path of the log output when doing debugging. See the Section called
Debugging in Chapter 4> for more information.

TExecutable
This class is not for end-user usage. Please ignore it.

TGetPluralForm
This class is not for end-user usage. Please ignore it.

TGnuGettextInstance class
The entire functionality of the gnugettext.pas unit is encapsulated in the TGnuGet-
textInstance class. This way you can instantiate multiple instances if you need an
instance with different settings than the ones from the default instance. The default
instance is put into a variable named DefaultInstance , and almost all non-class
procedures and functions in the unit refer to this instance.

procedure UseLanguage(LanguageCode: string);
When an application starts up, the initialization section of gnugettext.pas makes
this call:

UseLanguage(”);

This call examines the system language settings and sets the language values ac-
cordingly. On Windows, GetLocaleInfo() is used to determine the language settings,
although on Windows 95, GetThreadLocale() is used because GetLocaleInfo() wasn’t
implemented in that version.

The OS language settings can always be overridden by setting the LANGenvironment
variable like this (example is for Windows):

set LANG=de_DE
myapp

or on Linux:

30

Appendix A. API reference

LANG=de_DE && ./myapp

When a language has been set, UseLanguage will examine the first two letters and
find out which plural forms that apply to this language. See the Section called Plural
forms in Chapter 2> for more information on this topic.

All mo files that were open are closed. mo files are opened again when the text do-
mains are accessed.

A language code usually consists of a two-letter lowercase language code, an under-
score, and a two-letter uppercase country code. On Windows, this is not case sen-
sitive, but on Linux, it is. German in Germany becomes de_DE, English in England
becomes en_GB and flamish becomes nl_BE . If no translations can be found or a 5-
character language code, the system automatically attempts to use only the first two
digits. This means that if there is no nl_BE/default.mo file, nl/default.mo will be
used instead, if present.

You can find the two-letter ISO 639 language codes in the Section called ISO 639 lan-
guage codes in Appendix F> and the two-letter ISO 3166 country codes in the Section
called ISO 3166 country codes in Appendix F>.

function _(msg:widestring):widestring;
The _() function is an alias to the gettext function. Please see the Section called func-
tion gettext(msg:widestring):widestring;> for further information.

function GetCurrentLanguage:string;
This function returns the language code that was specified to the last call of UseLan-
guage() . If UseLanguage() has not been called, yet, or was called with an empty
string as parameter, it returns the language code that was derived from the operating
system language settings.

See the Section called procedure UseLanguage(LanguageCode: string);> for more infor-
mation.

function gettext(msg:widestring):widestring;
This function is the most important function of them all, and is the function that
names GNU gettext. It takes a string as parameter and returns the translation of that
string, if a translation can be found. It is used like this:

MessageDlg (gettext(’Hello, World’),mtInformation,[mbOK],0);

Because the _() function is the same as gettext() , the line above is normally written
like this:

MessageDlg (_(’Hello, World’),mtInformation,[mbOK],0);

The string parameter should only contain ascii characters. If it contains non-ascii
characters, the conversion from ansistring to widestring may be sensitive to current
Windows locale.

The result value is a widestring. If you use this in context with the Delphi string
type (ansistring), Delphi 6 and later will automatically convert the string types.
The MessageDlg example above show this, the first parameter in MessageDlg() is a
string , not a widestring . Delphi converts between string and widestring using
Windows API calls, and therefore converts perfectly to and from multibyte character
sets. On Linux, the behaviour is identical.

31

Appendix A. API reference

The gettext() functions looks up translations in the default.mo file (the default text
domain) unless the textdomain() procedure has been called.

Special case: The empty string: Please note that you should never try to translate an
empty string (_(”)). The translation of the empty string is the message header, which
contains information about the translator, the character set, modification date etc.

Performance: The gettext() function is very fast at looking up translations. It does a
binary search on the translation data, which are sorted in binary, and the search is case
sensitive and only a perfect match will give a translation. The translation files are memory
mapped on Windows and read into memory on Linux, and therefore it doesn’t take much
time to find a translation. However, you should consider to store a translated value if you
need it a lot of times, like when populating a big array.

function dgettext(Domain: string; MsgId: widestring): widestring;
This function is identical to gettext() , except that it looks up translations in the text
domain that is specified as the first parameter. You should always specify a string
literal as first parameter - don’t use variable names etc.:

LanguageList.Add(dgettext(’languagenames’,’Danish’));

In this example, Danish is looked up in languagenames.mo . During extraction of
strings from Delphi/ObjectPascal source code, ’Danish’ will be put into language-
names.po .

Special note for C/C++ programmers: The string extraction tool that is used for C and
C++ source code extracts differently than the extraction tool for ObjectPascal source code.
In the example above, the string ’Danish’ will be put in the main default.po file, mixing
everything up.

For further information on this subject, please see the Section called function get-
text(msg:widestring):widestring;>.

function ngettext(const
singular,plural:widestring;Number:longint):widestring;

This function is explained in the Section called Plural forms in Chapter 2>.

function dnget-
text(Domain,singular,plural:widestring;Number:longint):widestring;

This function is explained in the Section called Plural forms in Chapter 2>.

function getcurrenttextdomain:string;
This function returns the current text domain. The default value for the current text
domain is ’default’, but can be changed using textdomain() . See the Section called
procedure textdomain(Domain:string);> for further information.

32

Appendix A. API reference

procedure textdomain(Domain:string);
This procedure changes the current textdomain, i.e. the text domain that is used by
gettext() , _() and ngettext() . The default text domain, if textdomain() is not
called, is ’default’.

Usually, libraries, modules and other pieces of software that are not developed to-
gether with the application that they are included in, should use another text domain.
For instance, if the programmer of program A uses module B, then module B should
use another text domain that ’default’.

procedure bindtextdomain(Domain:string; Directory:string);
Each text domain can be located in a separate directory. The default is to search for
all mo files as applicationdir/locale/XX/LC_MESSAGES/domainname.mo , where
applicationdir is the directory where the .exe file or .dll file is, and XX is the language
code. You can specify an alternative location for a domain here. Example:

bindtextdomain (’moduleB’,’c:\moduleB\locale\’);

In this example, all translations done using the text domain ’moduleB’ will be looked
up in c:\moduleB\locale\XX\LC_MESSAGES\moduleB.mo . This can be very useful if
you link a module into your program file, but the module translations are somewhere
else on your harddisk.

procedure bindtextdomainToFile (Domain,Filename:string);
If you want to use gettext() as a string translation table that is independent of
languages, you might want to bind a domain to a specific file on the harddisk. For
instance, you might want to translate the ISO language codes to English language
names. This could be done like this:

function GetLanguageName (isocode:string):string;
var

EnglishLanguageName:string;
begin

bindtextdomainToFile (’isocodes’,’c:\isocodes.mo’);
EnglishLanguageName:=dgettext(’isocodes’,isocode);
Result:=dgettext(’languagenames’,EnglishLanguageName);

end;

There are many ways this can be used. For instance, the msgshowheader command
line tool uses bindtextdomainToFile() to fetch the header from a specific file that
is given as parameter. It is done something like this:

bindtextdomainToFile (’parameterfile’,paramstr(1));
writeln (dgettext(’parameterfile’,”));

The translation of the empty string is always the header.

procedure GetListOfLanguages (domain:string; list:TStrings);
This procedures searches the directory structure and the embedded translations for
any valid translation files for the specified domain. It uses the bindtextdomain()
directory. The result is a list of language codes that it puts into the list parameter.

It is then up to the programmer to convert these language codes into language names.
Example:

// Put the language codes into a listbox

33

Appendix A. API reference

ListBox.Items.Clear;
DefaultInstance.GetListOfLanguages (’default’,ListBox.Items);

// Convert the language names to an English language name using isotolanguagenames.mo
DefaultInstance.BindtextdomainToFile (’isotolanguagenames’,extractfilepath(paramstr(0))+’isotolanguagenames.mo’);
DefaultInstance.TranslateProperties (ListBox,’isotolanguagenames’);

// Translate the English language name to a localized language name
DefaultInstance.TranslateProperties (ListBox,’languagenames’);

function GetTranslationProperty (Propertyname:string):WideString;
The translation files contain a header as the translation of an empty string. A typical
header looks like this:

msgid ""
msgstr ""

"Project-Id-Version: Delphi 7 RTL\n"
"POT-Creation-Date: 2003-03-02 18:54\n"
"PO-Revision-Date: 2003-06-01 11:52--100\n"
"Last-Translator: Lars B. Dybdahl <Lars@dybdahl.dk >\n"
"Language-Team: Dansk <da@li.org >\n"
"MIME-Version: 1.0\n"
"Content-Type: text/plain; charset=UTF-8\n"
"Content-Transfer-Encoding: 8bit\n"
"License: You may use this file any way you want\n"

As you can see, all lines consist of a keyword, a colon, a space and a value. In order
to retrieve these informations easily, you can use the GetTranslationProperty()
function like this:

LabelTranslationLicense.Caption:=DefaultInstance.GetTranslationProperty(’License’);

function GetTranslatorNameAndEmail:widestring;
These two lines do the same thing:

LabelTranslator.Caption:=DefaultInstance.GetTranslationProperty(’Last-
Translator’);
LabelTranslator.Caption:=DefaultInstance.GetTranslatorNameAndEmail;

In other words, this function is just an easy way to fetch the translator name,
but not the only one. See the Section called function GetTranslationProperty
(Propertyname:string):WideString;> for more information.

procedure SaveUntranslatedMsgids(filename: string);
This function was originally meant to be used for debugging, but much better tools
are available now. Please do not use this function - expect it to become deprecated in
future versions.

procedure TranslateProperties(AnObject:TObject; textdomain:string=”);
This procedure iterates through all properties of AnObject and all it’s subcompo-
nents, and translates all string and widestring properties using the specified text do-
main. If no text domain is specified, the current text domain is used.

34

Appendix A. API reference

It will skip all properties that were marked to be ignored by one of the TP_* proce-
dures. If no translation is found for a string, it is not translated.

procedure TranslateComponent(AnObject: TComponent;
TextDomain:string=”);

This procedure will basically do the same as TranslateProperties() , but it will
add a subcomponent to AnObject , which remembers all untranslated strings. This
makes it possible to retranslate AnObject to another language later.

The second time that TranslateComponent() is called for a specific object, the sub-
component (that remembers all untranslated strings) is detected, and a retranslation
is done. The retranslation retranslates exactly those properties that were translated
the first time - it does not recurse all subcomponents to redetect string properties.
Therefore, you must be careful that all subcomponents that were present at the first
translation, also are present at the retranslation.

function TP_CreateRetranslator:TExecutable;
This function is only for internal use. Don’t use it yourself.

procedure TP_Ignore(AnObject:TObject; const name:string);
This procedure only affects the next execution of TranslateProperties() or Trans-
lateComponent() . The first parameter must be the same as the first parameter in
those other two procedures, and the name parameter specifies, which property you
don’t want to be translated. Several syntaxes are allowed:

TP_Ignore (self,’ButtonOK.Caption’); // Ignores caption on ButtonOK
TP_Ignore (self,’MyDBGrid’); // Ignores all properties on com-

ponent MyDBGrid
TP_Ignore (self,’.Caption’); // Ignores self’s caption

Since this procedure only has effect on the upcoming translation, it should always be
used just before TranslateProperties() or TranslateComponent() . Example:

procedure TFormMain.FormCreate(Sender: TObject);
begin

TP_Ignore (self, ’Listbox1.Items’);
TranslateComponent (self);

end;

In this example, that shows an implementation in the form’s FormCreate event han-
dler, all components on the form except the items in Listbox1 are translated.

procedure TP_GlobalIgnoreClass (IgnClass:TClass);
This procedure puts a class on a global ignore list, so that all objects of this type or
of types descending from this type won’t be translated by TranslateProperties()
or TranslateComponent() . For instance, it is not very useful to have TFont objects
translated, and therefore this line would make a lot of sense in most applications:

TP_GlobalIgnoreClass (TFont);

A good place to put this line is in the .dpr file. See the Section called Sample.dpr in
Appendix B> for further information.

35

Appendix A. API reference

procedure TP_GlobalIgnoreClassProperty
(IgnClass:TClass;propertyname:string);

This procedure puts one property of a class on a global ignore list, so that this prop-
erty won’t be translated by TranslateProperties() or TranslateComponent() for
all objects of this type or of a type that descends from this type. For instance, it is not
very useful to have TField.Fieldname translated, and therefore this line would make
a lot of sense in most database applications:

TP_GlobalIgnoreClassProperty (TField,’Fieldname’);

A good place to put this line is in the .dpr file. See the Section called Sample.dpr in
Appendix B> for further information.

procedure TP_GlobalHandleClass (HClass:TClass;Handler:TTranslator);
This procedure makes it possible implement another translation handling of a class
than what you can control with TranslateProperties() , TranslateComponent()
and the TP_* procedures. For instance, if you create a new class that does not use the
published keyword, its properties cannot be iterated by TranslateProperties()
and TranslateComponent() . Another example is, when you get 3rd party compo-
nents, that fail when you translate it’s properties, but if you do something special to
them, they translate well.

Basically, if you cannot translate a component using TranslateComponent , but you
can write a procedure yourself that can, then use TP_GlobalHandleClass to make
TranslateComponent use your procedure.

36

Appendix B. "Hello, World" source code

Sample.dpr

program Sample;

uses
gnugettext in ’gnugettext.pas’,
gginitializer in ’gginitializer.pas’,
Forms,
Graphics,
SampleForm in ’SampleForm.pas’ {FormMain};

{$R *.res}

begin
// This is the list of ignores for this project. The list of
// ignores has to come before the first call to TranslateComponent().
TP_GlobalIgnoreClass(TFont);

Application.Initialize;
Application.CreateForm(TFormMain, FormMain);
Application.Run;

end.

gginitializer.pas

unit gginitializer;

interface

implementation

uses
gnugettext;

initialization
// Use delphi.mo for runtime library translations, if it is there
// by putting this line into this separate unit, we can execute it
// before the initialization sections of the other units are executed.
AddDomainForResourceString(’delphi’);

end.

SampleForm.pas

unit SampleForm;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls;

type
TFormMain = class(TForm)

ButtonTestGettext: TButton;
ButtonTestResourcestring: TButton;
procedure ButtonTestGettextClick(Sender: TObject);
procedure ButtonTestResourcestringClick(Sender: TObject);

37

Appendix B. "Hello, World" source code

procedure FormCreate(Sender: TObject);
private

{ Private declarations }
public

{ Public declarations }
end;

var
FormMain: TFormMain;

implementation

uses
gnugettext;

{$R *.dfm}

procedure TFormMain.FormCreate(Sender: TObject);
begin

TranslateComponent (self);
end;

resourcestring
MessageToUser=’Thank you for clicking this button’;

procedure TFormMain.ButtonTestResourcestringClick(Sender: TObject);
begin

// This is a demonstration of automatic resourcestring translation
MessageDlg (MessageToUser,mtInformation,[mbOK],0);

end;

procedure TFormMain.ButtonTestGettextClick(Sender: TObject);
begin

// This is a demo of the _() syntax
MessageDlg (_(’Thank you for clicking this button’),mtInformation,[mbOK],0);

end;

end.

SampleForm.dfm

object FormMain: TFormMain
Width = 354
Height = 179
Caption = ’GNU gettext sample application’
OnCreate = FormCreate
Font.Charset = DEFAULT_CHARSET
Font.Color = clWindowText
Font.Height = -11
Font.Name = ’MS Sans Serif’
Font.Style = []
object ButtonTestGettext: TButton

Left = 64
Top = 48
Width = 75
Height = 25
Caption = ’Click me’
OnClick = ButtonTestGettextClick

end
object ButtonTestResourcestring: TButton

Left = 144
Top = 48
Width = 75
Height = 25

38

Appendix B. "Hello, World" source code

Caption = ’Click me’
OnClick = ButtonTestResourcestringClick

end
end

39

Appendix B. "Hello, World" source code

40

Appendix C. Dxgettext command-line tools reference

assemble
This tool embeds your translations in your executable. When your programs work,
including translations, type this:

assemble --dxgettext applicationfilename.exe

This will find all translation files (mo files) in the locale subdirectory and append
them to the exe file. It also works with dll files. This system should coexist nicely with
other tools that append something to the .exe file, as long as the other tool knows how
to coexist with other tools. If you are using another tool to append something, that
does not coexist with other tools, use that tool before you embed translations.

dfntopo
This tool converts your Delphi ITE translations to PO files. This is the help screen that
appears when you run the program without parameters:

DFNToPO: extracts strings from DFN and RC files and insert any trans-
lations into a PO file

This program is subject to the Mozilla Public License
Version 1.1 (the "License"); you may not use this program except
in compliance with the License. You may obtain a copy of the License at
http://www.mozilla.org/MPL/MPL-1.1.html

Portions created by Peter Thornqvist are
Copyright (c) 2003 by Peter Thornqvist; all rights reserved.

Usage:
DFNToPO [options]
where [options] can be any of the following:
-s : searches in sub-folders also (defaults to FALSE)
-f : force creation of DFN/RC items not found in po (defaults to FALSE)
-m : merge TStrings items into single item delimited by \n (defaults to FALSE)
-p <POFile > : full path and filename of the po file (defaults to "de-
fault.po" in current dir).

NOTE: Filenames with spaces must be enclosed in quotes.
-d <DFNPath> : full path to the dfn files. Do NOT include a filemask (de-
faults to current dir).

NOTE: Paths with spaces must be enclosed in quotes.

See the Section called Migrating from the ITE to dxgettext in Chapter 5> for further
information.

dxgettext
This will extract all texts from the specified files and save them in a file named de-
fault.po:

dxgettext usage:
dxgettext *.pas *.dfm *.dpr -r
dxgettext -b c:\source\myprogram --delphi

The following file formats are supported:

• ObjectPascal source code: *.pas, *.inc and *.dpr.

41

Appendix C. Dxgettext command-line tools reference

• DFM/XFM files: *.dfm and *.xfm.

• C/C++ source code: *.c and *.cpp. These are extracted using the xgettext command
line tool (see the Section called xgettext in Appendix D>).

• RC files: *.rc.

• Executables: *.exe, *.dll and *.bpl. (only on Windows)

This is the help text that appears when you run the program without parameters:

dxgettext 1.1.1
dxgettext usage:

dxgettext *.pas *.dfm *.dpr -r
dxgettext -b c:\source\myprogram --delphi

This will extract all texts from the specified files and save them
in a file named default.po.

Options:
--delphi Adds the wildcards: *.pas *.inc *.rc *.dpr *.xfm *.dfm
--kylix Adds the wildcards: *.pas *.inc *.rc *.dpr *.xfm
-r Recurse subdirectories
-b dir Use directory as base directory for filenames.

You can specify several base dirs, that will all be scanned.
-o:msgid Order by msgid
-o:occ Order by occurence (default)
-o dir Output directory for .po files
-q Quiet: Reduces output to absolute minimum.
--codepage nnn Assume the specified codepage. Default is CP_ACP.
--nowc Assume wildcards to be part of filenames
--ignore-constreplace Suppresses warnings about CRLF

If a filename is preceded with @, it is assumed to contain a list of
filenames or file masks.

dxgreg
This Windows only tool can do three different things:

• Starting it with no parameters will make it register the shell extensions with your
Windows. This is normally done during installation and requires administrative
rights with your computer. If you lose the desktop integrations for some reason,
just run this program and your Windows Explorer will be fully integrated with
GNU gettext for Delphi, C++ Builder and Kylix again.

• If you start it with the --reset-user parameter, it will delete all user-specific file
extension associations done to the file types used by this system. This only makes
sense on Windows 2000, XP and later. It does not require administrative rights.

• If you start it with the --uninstall parameter, it will delete all shell integration
features that make use of executable files in the directory where dxgreg.exe was
started. This is usually done when uninstalling this system.

ixtopo
This tool is useful for converting Delphi ITE translations to GNU gettext. This is the
text that appears when you run the program without parameters:

IXTOPO 1.0: extracts strings from an ITE xml file and inserts any trans-
lations into a PO file.

This program is subject to the Mozilla Public License

42

Appendix C. Dxgettext command-line tools reference

Version 1.1 (the "License"); you may not use this program except
in compliance with the License. You may obtain a copy of the License at
http://www.mozilla.org/MPL/MPL-1.1.html

Portions created by Peter Thornqvist are
Copyright (c) 2003 by Peter Thornqvist; all rights reserved.

Usage:

ixtopo <xmlfile > <pofile > <locale > [-f]

where:

<xmlfile > is the xml file to read from (REQUIRED)
<pofile > is the po file to write to (REQUIRED)
<locale > is the locale to extract and insert into the po file (REQUIRED)
-f forces the creation of new entries in the po file if not found (OP-
TIONAL, defaults to FALSE)

NOTE:
Since locale names in XML files contains spaces, you must
put quotes around the locale, i.e use "US en" to extract
the American english translations

See the Section called Migrating from the ITE to dxgettext in Chapter 5> for further
information.

msgimport
This tool makes it possible to create a po file from an ascii tabulated text file. It does
not support multiline msgstr values. In order to use it, it must conform to these rules:

• Be an utf-8 encoded text file

• It may not contain any header lines etc.

• It must contain exactly two columns, separated by a tabulator (ascii 9), where the
first column contains the msgid, and the second column contains the msgstr.

If you have something in tabular form that you want to convert to a po file, do it like
this:

• Load the tabulated data into a spreadsheet. If you don’t have a spreadsheet on
your computer, get it at openoffice.org1.

• Delete all columns except the two that contain msgid and msgstr. Make sure the
first column is msgstr.

• Delete all rows that do not contains data to be converted.

• Save the file as a text-file, tabulator separated with no text delimiters.

• Load the text file into an utf-8 capable text editor like Unired2.

• Save the text file as an utf-8 text file with "no BOM".

• Run
msgimport textfile.txt -o output.po

and you got a valid .po file.

43

Appendix C. Dxgettext command-line tools reference

msgmergePOT
This tool can merge two templates to become a translation file. It looks at the com-
ments in each template to find out, which msgids belong together.

This is the help screen that appears when you run the tool with no parameters:

msgmergePOT 1.1.1

msgmergePOT usage:
msgmergePOT english.po otherlanguage.po destination.po

This will create a po file from two identical po extracts that
only differ by the language, for instance the German and English
runtime source code from Borland.

msgmkignore
This tool tries to guess, which msgids should not be translated, and writes those to a
separate file. The result of this can be used with msgremove to remove unnecessary
msgids from a template before sending it to the translator.

msgmkignore uses several methods to find out, which messages aren’t translatable.
These include finding messages without a single letter in it and finding messages
with letters and digits but no spaces.

This is the help screen that appears when you run the program with no parameters:

msgmkignore 1.1.1

Usage:
msgmkignore default.po -o ignore.po

This will extract texts from default.po that this program
thinks should not be translated by a translator

msgremove
msgremove can remove all messages from a PO file that are contained in a second PO
file. With this, you can remove a lot of unnecessary entries from your automatically
generated template before sending it to the translator. This is the text that appears
when you run the program without any parameters:

msgremove 1.1.1

msgremove usage:
msgremove default.po -i ignore.po -o output.po

This will generate the file output.po as a copy of default.po,
but without all the MsgIds that are listed in ignore.po.

msgshowheader
This tool takes an MO file as parameter and simply outputs the header to standard
out. This is the text that appears when you run the program without any parameters:

msgshowheader 1.1.1

msgshowheader usage:
msgshowheader translation.mo

44

Appendix C. Dxgettext command-line tools reference

This will output the header of the translation to stdout, i.e. _(”).

msgsplitTStrings
This tool is only intended to be used when upgrading from versions of dxgettext that
are older than version 1.0. It takes all multiline messages and adds each line without
the linebreak as a new message.

msgstripCR
This tool is only intended to be used when upgrading from versions of dxgettext that
are older than version 1.0. It simply removes all ’\r’ escape sequences from messages.

Notes
1. http://www.openoffice.org/

2. http://unired.sf.net/

45

Appendix C. Dxgettext command-line tools reference

46

Appendix D. GNU Command-line tools reference

msgattrib
Changes the fuzzy/obsolete/translated status of messages in a PO file.

NAME
msgattrib - attribute matching and manipulation on message catalog

SYNOPSIS
msgattrib [OPTION] [INPUTFILE]

DESCRIPTION
Filters the messages of a translation catalog according to their
attributes, and manipulates the attributes.

Mandatory arguments to long options are mandatory for short options
too.

Input file location:
INPUTFILE
input PO file

-D, --directory=DIRECTORY
add DIRECTORY to list for input files search

If no input file is given or if it is -, standard input is read.

Output file location:
-o, --output-file=FILE
write output to specified file

The results are written to standard output if no output file is speci-

fied or if it is -.

Message selection:
--translated
keep translated, remove untranslated messages

--untranslated
keep untranslated, remove translated messages

--no-fuzzy
remove ’fuzzy’ marked messages

--only-fuzzy
keep ’fuzzy’ marked messages

--no-obsolete
remove obsolete #~ messages

--only-obsolete
keep obsolete #~ messages

Attribute manipulation:
--set-fuzzy
set all messages ’fuzzy’

--clear-fuzzy
set all messages non-’fuzzy’

--set-obsolete
set all messages obsolete

47

Appendix D. GNU Command-line tools reference

--clear-obsolete
set all messages non-obsolete

--fuzzy
synonym for --only-fuzzy --clear-fuzzy

--obsolete
synonym for --only-obsolete --clear-obsolete

Output details:
-e, --no-escape
do not use C escapes in output (default)

-E, --escape
use C escapes in output, no extended chars

--force-po
write PO file even if empty

-i, --indent
write the .po file using indented style

--no-location
do not write ’#: filename:line’ lines

-n, --add-location
generate ’#: filename:line’ lines (default)

--strict
write out strict Uniforum conforming .po file

-w, --width=NUMBER
set output page width

--no-wrap
do not break long message lines, longer than the output page
width, into several lines

-s, --sort-output
generate sorted output

-F, --sort-by-file
sort output by file location

Informative output:
-h, --help
display this help and exit

-V, --version
output version information and exit

AUTHOR
Written by Bruno Haible.

REPORTING BUGS
Report bugs to <bug-gnu-gettext@gnu.org >

COPYRIGHT
Copyright (C) 2001-2002 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is
NO warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE.

SEE ALSO
The full documentation for msgattrib is maintained as a Texinfo manual.
If the info and msgattrib programs are properly installed at your site,

48

Appendix D. GNU Command-line tools reference

the command

info msgattrib

should give you access to the complete manual.

msgcat
This tool merges several PO files. It can also sort the files and change the output
format.

NAME
msgcat - combines several message catalogs

SYNOPSIS
msgcat [OPTION] [INPUTFILE]...

DESCRIPTION
Concatenates and merges the specified PO files. Find messages which
are common to two or more of the specified PO files. By us-

ing the
--more-than option, greater commonality may be requested be-

fore mes-
sages are printed. Conversely, the --less-than option may be used to
specify less commonality before messages are printed (i.e.
--less-than=2 will only print the unique messages). Translations, com-

ments and extract comments will be cumulated, except that if
--use-first is specified, they will be taken from the first PO file to
define them. File positions from all PO files will be cumulated.

Mandatory arguments to long options are mandatory for short options
too.

Input file location:
INPUTFILE ...
input files

-f, --files-from=FILE
get list of input files from FILE

-D, --directory=DIRECTORY
add DIRECTORY to list for input files search

If input file is -, standard input is read.

Output file location:
-o, --output-file=FILE
write output to specified file

The results are written to standard output if no output file is speci-

fied or if it is -.

Message selection:
- <, --less-than=NUMBER
print messages with less than this many definitions, defaults to
infinite if not set

- >, --more-than=NUMBER
print messages with more than this many definitions, defaults to
0 if not set

-u, --unique

49

Appendix D. GNU Command-line tools reference

shorthand for --less-than=2, requests that only unique messages
be printed

Output details:
-t, --to-code=NAME
encoding for output

--use-first
use first available translation for each message, don’t merge
several translations

-e, --no-escape
do not use C escapes in output (default)

-E, --escape
use C escapes in output, no extended chars

--force-po
write PO file even if empty

-i, --indent
write the .po file using indented style

--no-location
do not write ’#: filename:line’ lines

-n, --add-location
generate ’#: filename:line’ lines (default)

--strict
write out strict Uniforum conforming .po file

-w, --width=NUMBER
set output page width

--no-wrap
do not break long message lines, longer than the output page
width, into several lines

-s, --sort-output
generate sorted output

-F, --sort-by-file
sort output by file location

Informative output:
-h, --help
display this help and exit

-V, --version
output version information and exit

AUTHOR
Written by Bruno Haible.

REPORTING BUGS
Report bugs to <bug-gnu-gettext@gnu.org >.

COPYRIGHT
Copyright (C) 2001-2002 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is
NO warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE.

SEE ALSO
The full documentation for msgcat is maintained as a Texinfo manual.

50

Appendix D. GNU Command-line tools reference

If the info and msgcat programs are properly installed at your site,
the command

info msgcat

should give you access to the complete manual.

msgcmp
This compares two PO files, and is often used to check that everything has been
translated.

NAME
msgcmp - compare message catalog and template

SYNOPSIS
msgcmp [OPTION] def.po ref.pot

DESCRIPTION
Compare two Uniforum style .po files to check that both con-

tain the
same set of msgid strings. The def.po file is an existing PO file with
the translations. The ref.pot file is the last created PO file, or a
PO Template file (generally created by xgettext). This is use-

ful for
checking that you have translated each and every message in your pro-

gram. Where an exact match cannot be found, fuzzy matching is used to
produce better diagnostics.

Mandatory arguments to long options are mandatory for short options
too.

Input file location:
def.po translations

ref.pot
references to the sources

-D, --directory=DIRECTORY
add DIRECTORY to list for input files search

Operation modifiers:
-m, --multi-domain
apply ref.pot to each of the domains in def.po

Informative output:
-h, --help
display this help and exit

-V, --version
output version information and exit

AUTHOR
Written by Peter Miller.

REPORTING BUGS
Report bugs to <bug-gnu-gettext@gnu.org >.

COPYRIGHT
Copyright (C) 1995-1998, 2000-2002 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is
NO warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE.

51

Appendix D. GNU Command-line tools reference

SEE ALSO
The full documentation for msgcmp is maintained as a Texinfo manual.
If the info and msgcmp programs are properly installed at your site,
the command

info msgcmp

should give you access to the complete manual.

msgcomm
This tool lists all messages that are common for two or more PO files.

NAME
msgcomm - match two message catalogs

SYNOPSIS
msgcomm [OPTION] [INPUTFILE]...

DESCRIPTION
Find messages which are common to two or more of the spec-

ified PO
files. By using the --more-than option, greater commonality may be
requested before messages are printed. Conversely, the --

less-than
option may be used to specify less commonality before mes-

sages are
printed (i.e. --less-than=2 will only print the unique messages).
Translations, comments and extract comments will be preserved, but only
from the first PO file to define them. File positions from all PO
files will be cumulated.

Mandatory arguments to long options are mandatory for short options
too.

Input file location:
INPUTFILE ...
input files

-f, --files-from=FILE
get list of input files from FILE

-D, --directory=DIRECTORY
add DIRECTORY to list for input files search

If input file is -, standard input is read.

Output file location:
-o, --output-file=FILE
write output to specified file

The results are written to standard output if no output file is speci-

fied or if it is -.

Message selection:
- <, --less-than=NUMBER
print messages with less than this many definitions, defaults to
infinite if not set

- >, --more-than=NUMBER
print messages with more than this many definitions, defaults to
1 if not set

52

Appendix D. GNU Command-line tools reference

-u, --unique
shorthand for --less-than=2, requests that only unique messages
be printed

Output details:
-e, --no-escape
do not use C escapes in output (default)

-E, --escape
use C escapes in output, no extended chars

--force-po
write PO file even if empty

-i, --indent
write the .po file using indented style

--no-location
do not write ’#: filename:line’ lines

-n, --add-location
generate ’#: filename:line’ lines (default)

--strict
write out strict Uniforum conforming .po file

-w, --width=NUMBER
set output page width

--no-wrap
do not break long message lines, longer than the output page
width, into several lines

-s, --sort-output
generate sorted output

-F, --sort-by-file
sort output by file location

--omit-header
don’t write header with ‘msgid ""’ entry

Informative output:
-h, --help
display this help and exit

-V, --version
output version information and exit

AUTHOR
Written by Peter Miller.

REPORTING BUGS
Report bugs to <bug-gnu-gettext@gnu.org >.

COPYRIGHT
Copyright (C) 1995-1998, 2000-2002 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is
NO warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE.

SEE ALSO
The full documentation for msgcomm is maintained as a Texinfo manual.
If the info and msgcomm programs are properly installed at your site,
the command

53

Appendix D. GNU Command-line tools reference

info msgcomm

should give you access to the complete manual.

msgen
Very simple program that creates an English translation file, where all translations
are a copy of the original, but marked as fuzzy. A translator can then run through all
messages and correct any typing errors or improve any words, if needed.

NAME
msgen - create English message catalog

SYNOPSIS
msgen [OPTION] INPUTFILE

DESCRIPTION
Creates an English translation catalog. The input file is the last
created English PO file, or a PO Template file (generally cre-

ated by
xgettext). Untranslated entries are assigned a translation that is
identical to the msgid, and are marked fuzzy.

Mandatory arguments to long options are mandatory for short options
too.

Input file location:
INPUTFILE
input PO or POT file

-D, --directory=DIRECTORY
add DIRECTORY to list for input files search

If input file is -, standard input is read.

Output file location:
-o, --output-file=FILE
write output to specified file

The results are written to standard output if no output file is speci-

fied or if it is -.

Output details:
-e, --no-escape
do not use C escapes in output (default)

-E, --escape
use C escapes in output, no extended chars

--force-po
write PO file even if empty

-i, --indent
indented output style

--no-location
suppress ’#: filename:line’ lines

--add-location
preserve ’#: filename:line’ lines (default)

--strict

54

Appendix D. GNU Command-line tools reference

strict Uniforum output style

-w, --width=NUMBER
set output page width

--no-wrap
do not break long message lines, longer than the output page
width, into several lines

-s, --sort-output
generate sorted output

-F, --sort-by-file
sort output by file location

Informative output:
-h, --help
display this help and exit

-V, --version
output version information and exit

AUTHOR
Written by Bruno Haible.

REPORTING BUGS
Report bugs to <bug-gnu-gettext@gnu.org >.

COPYRIGHT
Copyright (C) 2001-2002 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is
NO warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE.

SEE ALSO
The full documentation for msgen is maintained as a Texinfo man-

ual. If
the info and msgen programs are properly installed at your site, the
command

info msgen

should give you access to the complete manual.

msgexec
Runs an external command line tool once for each message in a PO file.

NAME
msgexec - process translations of message catalog

SYNOPSIS
msgexec [OPTION] COMMAND [COMMAND-OPTION]

DESCRIPTION
Applies a command to all translations of a translation cata-

log. The
COMMAND can be any program that reads a translation from standard
input. It is invoked once for each translation. Its output becomes
msgexec’s output. msgexec’s return code is the maximum re-

turn code
across all invocations.

A special builtin command called ’0’ outputs the translation, followed

55

Appendix D. GNU Command-line tools reference

by a null byte. The output of "msgexec 0" is suitable as in-
put for

"xargs -0".

Mandatory arguments to long options are mandatory for short options
too.

Input file location:
-i, --input=INPUTFILE
input PO file

-D, --directory=DIRECTORY
add DIRECTORY to list for input files search

If no input file is given or if it is -, standard input is read.

Informative output:
-h, --help
display this help and exit

-V, --version
output version information and exit

AUTHOR
Written by Bruno Haible.

REPORTING BUGS
Report bugs to <bug-gnu-gettext@gnu.org >.

COPYRIGHT
Copyright (C) 2001-2002 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is
NO warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE.

SEE ALSO
The full documentation for msgexec is maintained as a Texinfo manual.
If the info and msgexec programs are properly installed at your site,
the command

info msgexec

should give you access to the complete manual.

msgfilter
Runs an external command line tool once for each message, but uses it to make
changes to each translation. The external tool takes the translation as input on stdin,
and writes the new translation out on stdout.

NAME
msgfilter - edit translations of message catalog

SYNOPSIS
msgfilter [OPTION] FILTER [FILTER-OPTION]

DESCRIPTION
Applies a filter to all translations of a translation catalog.

Mandatory arguments to long options are mandatory for short options
too.

Input file location:
-i, --input=INPUTFILE

56

Appendix D. GNU Command-line tools reference

input PO file

-D, --directory=DIRECTORY
add DIRECTORY to list for input files search

If no input file is given or if it is -, standard input is read.

Output file location:
-o, --output-file=FILE
write output to specified file

The results are written to standard output if no output file is speci-

fied or if it is -.

The FILTER can be any program that reads a translation from standard
input and writes a modified translation to standard output.

Useful FILTER-OPTIONs when the FILTER is ’sed’:
-e, --expression=SCRIPT
add SCRIPT to the commands to be executed

-f, --file=SCRIPTFILE
add the contents of SCRIPTFILE to the commands to be executed

-n, --quiet, --silent
suppress automatic printing of pattern space

Output details:
--no-escape
do not use C escapes in output (default)

-E, --escape
use C escapes in output, no extended chars

--force-po
write PO file even if empty

--indent
indented output style

--keep-header
keep header entry unmodified, don’t filter it

--no-location
suppress ’#: filename:line’ lines

--add-location
preserve ’#: filename:line’ lines (default)

--strict
strict Uniforum output style

-w, --width=NUMBER
set output page width

--no-wrap
do not break long message lines, longer than the output page
width, into several lines

-s, --sort-output
generate sorted output

-F, --sort-by-file
sort output by file location

57

Appendix D. GNU Command-line tools reference

Informative output:
-h, --help
display this help and exit

-V, --version
output version information and exit

AUTHOR
Written by Bruno Haible.

REPORTING BUGS
Report bugs to <bug-gnu-gettext@gnu.org >.

COPYRIGHT
Copyright (C) 2001-2002 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is
NO warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE.

SEE ALSO
The full documentation for msgfilter is maintained as a Texinfo manual.
If the info and msgfilter programs are properly installed at your site,
the command

info msgfilter

should give you access to the complete manual.

msgfmt
Compiles a PO file to an MO file.

NAME
msgfmt - compile message catalog to binary format

SYNOPSIS
msgfmt [OPTION] filename.po ...

DESCRIPTION
Generate binary message catalog from textual translation description.

Mandatory arguments to long options are mandatory for short options
too.

Input file location:
filename.po ...
input files

-D, --directory=DIRECTORY
add DIRECTORY to list for input files search

If input file is -, standard input is read.

Operation mode:
-j, --java
Java mode: generate a Java ResourceBundle class

--java2
like --java, and assume Java2 (JDK 1.2 or higher)

--tcl Tcl mode: generate a tcl/msgcat .msg file

Output file location:
-o, --output-file=FILE

58

Appendix D. GNU Command-line tools reference

write output to specified file

--strict
enable strict Uniforum mode

If output file is -, output is written to standard output.

Output file location in Java mode:
-r, --resource=RESOURCE
resource name

-l, --locale=LOCALE
locale name, either language or language_COUNTRY

-d DIRECTORY
base directory of classes directory hierarchy

The class name is determined by appending the locale name to the
resource name, separated with an underscore. The -d option is manda-

tory. The class is written under the specified directory.

Output file location in Tcl mode:
-l, --locale=LOCALE
locale name, either language or language_COUNTRY

-d DIRECTORY
base directory of .msg message catalogs

The -l and -d options are mandatory. The .msg file is written in the
specified directory.

Input file interpretation:
-c, --check
perform all the checks implied by --check-format,
--check-header, --check-domain

--check-format
check language dependent format strings

--check-header
verify presence and contents of the header entry

--check-domain
check for conflicts between domain directives and the --out-

put-file option

-C, --check-compatibility
check that GNU msgfmt behaves like X/Open msgfmt

--check-accelerators[=CHAR]
check presence of keyboard accelerators for menu items

-f, --use-fuzzy
use fuzzy entries in output

Output details:
-a, --alignment=NUMBER
align strings to NUMBER bytes (default: 1)

--no-hash
binary file will not include the hash table

Informative output:
-h, --help

59

Appendix D. GNU Command-line tools reference

display this help and exit

-V, --version
output version information and exit

--statistics
print statistics about translations

-v, --verbose
increase verbosity level

AUTHOR
Written by Ulrich Drepper.

REPORTING BUGS
Report bugs to <bug-gnu-gettext@gnu.org >.

COPYRIGHT
Copyright (C) 1995-1998, 2000-2002 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is
NO warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE.

SEE ALSO
The full documentation for msgfmt is maintained as a Texinfo manual.
If the info and msgfmt programs are properly installed at your site,
the command

info msgfmt

should give you access to the complete manual.

msggrep
Extracts all messages of a translation catalog that match a given pattern or belong to
some given source files.

NAME
msggrep - pattern matching on message catalog

SYNOPSIS
msggrep [OPTION] [INPUTFILE]

DESCRIPTION
Extracts all messages of a translation catalog that match a given pat-

tern or belong to some given source files.

Mandatory arguments to long options are mandatory for short options
too.

Input file location:
INPUTFILE
input PO file

-D, --directory=DIRECTORY
add DIRECTORY to list for input files search

If no input file is given or if it is -, standard input is read.

Output file location:
-o, --output-file=FILE
write output to specified file

60

Appendix D. GNU Command-line tools reference

The results are written to standard output if no output file is speci-

fied or if it is -.

Message selection:
[-N SOURCEFILE]... [-M DOMAINNAME]... [-K MSGID-PATTERN] [-

T
MSGSTR-PATTERN] [-C COMMENT-PATTERN]

A message is selected if it comes from one of the specified source
files, or if it comes from one of the specified domains, or if -

K is
given and its key (msgid or msgid_plural) matches MSGID-PATTERN, or if
-T is given and its translation (msgstr) matches MSGSTR-PATTERN, or if
-C is given and the translator’s comment matches COMMENT-PATTERN.

When more than one selection criterion is specified, the set of
selected messages is the union of the selected messages of each crite-

rion.

MSGID-PATTERN or MSGSTR-PATTERN syntax:
[-E | -F] [-e PATTERN | -f FILE]...

PATTERNs are basic regular expressions by default, or extended regular
expressions if -E is given, or fixed strings if -F is given.

-N, --location=SOURCEFILE
select messages extracted from SOURCEFILE

-M, --domain=DOMAINNAME
select messages belonging to domain DOMAINNAME

-K, --msgid
start of patterns for the msgid

-T, --msgstr
start of patterns for the msgstr

-E, --extended-regexp
PATTERN is an extended regular expression

-F, --fixed-strings
PATTERN is a set of newline-separated strings

-e, --regexp=PATTERN
use PATTERN as a regular expression

-f, --file=FILE
obtain PATTERN from FILE

-i, --ignore-case
ignore case distinctions

Output details:
--no-escape
do not use C escapes in output (default)

--escape
use C escapes in output, no extended chars

--force-po
write PO file even if empty

--indent
indented output style

61

Appendix D. GNU Command-line tools reference

--no-location
suppress ’#: filename:line’ lines

--add-location
preserve ’#: filename:line’ lines (default)

--strict
strict Uniforum output style

-w, --width=NUMBER
set output page width

--no-wrap
do not break long message lines, longer than the output page
width, into several lines

--sort-output
generate sorted output

--sort-by-file
sort output by file location

Informative output:
-h, --help
display this help and exit

-V, --version
output version information and exit

AUTHOR
Written by Bruno Haible.

REPORTING BUGS
Report bugs to <bug-gnu-gettext@gnu.org >.

COPYRIGHT
Copyright (C) 2001-2002 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is
NO warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE.

SEE ALSO
The full documentation for msggrep is maintained as a Texinfo manual.
If the info and msggrep programs are properly installed at your site,
the command

info msggrep

should give you access to the complete manual.

msghack
This very special tool can swap msgid and msgstr in a PO file, remove all translations
in order to convert a translation file into a template file, and can also append the
contents of one PO file to another.

It is part of Red Hat Linux 9, but hasn’t been seen compiled for Windows yet. It also
doesn’t have a man-page on Red Hat Linux, but here you can see the help when
running msghack --help :

Usage: /usr/bin/msghack [OPTION] file.po [ref.po]
This program can be used to alter .po files in ways no sane mind would think about.

-o result will be written to FILE

62

Appendix D. GNU Command-line tools reference

--invert invert a po file by switching msgid and msgstr
--master join any number of files in a master-formatted catalog
--empty empty the contents of the .po file, creating a .pot
--append append entries from ref.po that don’t exist in file.po

Note: It is just a replacement of msghack for backward support.

msginit

NAME
msginit - initialize a message catalog

SYNOPSIS
msginit [OPTION]

DESCRIPTION
Creates a new PO file, initializing the meta information with values
from the user’s environment.

Mandatory arguments to long options are mandatory for short options
too.

Input file location:
-i, --input=INPUTFILE
input POT file

If no input file is given, the current directory is searched for the
POT file. If it is -, standard input is read.

Output file location:
-o, --output-file=FILE
write output to specified PO file

If no output file is given, it depends on the --locale option or the
user’s locale setting. If it is -, the results are written to standard
output.

Output details:
-l, --locale=LL_CC
set target locale

--no-translator
assume the PO file is automatically generated

-w, --width=NUMBER
set output page width

--no-wrap
do not break long message lines, longer than the output page
width, into several lines

Informative output:
-h, --help
display this help and exit

-V, --version
output version information and exit

AUTHOR
Written by Bruno Haible.

REPORTING BUGS
Report bugs to <bug-gnu-gettext@gnu.org >.

63

Appendix D. GNU Command-line tools reference

COPYRIGHT
Copyright (C) 2001-2002 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is
NO warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE.

SEE ALSO
The full documentation for msginit is maintained as a Texinfo manual.
If the info and msginit programs are properly installed at your site,
the command

info msginit

should give you access to the complete manual.

msgmerge
This tool can merge two PO files, where it takes the msgids from one file and the
translations from another file. It is normally used to update a translation that was
made for one version of a program, to be useful for the next version of the program,
by merging the translation with a template that was extracted from the new source
code.

NAME
msgmerge - merge message catalog and template

SYNOPSIS
msgmerge [OPTION] def.po ref.pot

DESCRIPTION
Merges two Uniforum style .po files together. The def.po file is an
existing PO file with translations which will be taken over to the
newly created file as long as they still match; comments will be pre-

served, but extracted comments and file positions will be discarded.
The ref.pot file is the last created PO file with up-to-date source
references but old translations, or a PO Template file (gener-

ally cre-
ated by xgettext); any translations or comments in the file will be
discarded, however dot comments and file positions will be preserved.
Where an exact match cannot be found, fuzzy matching is used to produce
better results.

Mandatory arguments to long options are mandatory for short options
too.

Input file location:
def.po translations referring to old sources

ref.pot
references to new sources

-D, --directory=DIRECTORY
add DIRECTORY to list for input files search

-C, --compendium=FILE
additional library of message translations, may be specified
more than once

Operation mode:
-U, --update
update def.po, do nothing if def.po already up to date

Output file location:

64

Appendix D. GNU Command-line tools reference

-o, --output-file=FILE
write output to specified file

The results are written to standard output if no output file is speci-

fied or if it is -.

Output file location in update mode: The result is written back to
def.po.

--backup=CONTROL
make a backup of def.po

--suffix=SUFFIX
override the usual backup suffix

The version control method may be selected via the --backup op-
tion or

through the VERSION_CONTROL environment variable. Here are the values:

none, off
never make backups (even if --backup is given)

numbered, t
make numbered backups

existing, nil
numbered if numbered backups exist, simple otherwise

simple, never
always make simple backups

The backup suffix is ‘~’, unless set with --suffix or the SIM-

PLE_BACKUP_SUFFIX environment variable.

Operation modifiers:
-m, --multi-domain
apply ref.pot to each of the domains in def.po

Output details:
-e, --no-escape
do not use C escapes in output (default)

-E, --escape
use C escapes in output, no extended chars

--force-po
write PO file even if empty

-i, --indent
indented output style

--no-location
suppress ’#: filename:line’ lines

--add-location
preserve ’#: filename:line’ lines (default)

--strict
strict Uniforum output style

-w, --width=NUMBER
set output page width

--no-wrap

65

Appendix D. GNU Command-line tools reference

do not break long message lines, longer than the output page
width, into several lines

-s, --sort-output
generate sorted output

-F, --sort-by-file
sort output by file location

Informative output:
-h, --help
display this help and exit

-V, --version
output version information and exit

-v, --verbose
increase verbosity level

-q, --quiet, --silent
suppress progress indicators

AUTHOR
Written by Peter Miller.

REPORTING BUGS
Report bugs to <bug-gnu-gettext@gnu.org >.

COPYRIGHT
Copyright (C) 1995-1998, 2000-2002 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is
NO warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE.

SEE ALSO
The full documentation for msgmerge is maintained as a Texinfo manual.
If the info and msgmerge programs are properly installed at your site,
the command

info msgmerge

should give you access to the complete manual.

msgunfmt
This tool decompiles an MO file to a PO file.

NAME
msgunfmt - uncompile message catalog from binary format

SYNOPSIS
msgunfmt [OPTION] [FILE]...

DESCRIPTION
Convert binary message catalog to Uniforum style .po file.

Mandatory arguments to long options are mandatory for short options
too.

Operation mode:
-j, --java
Java mode: input is a Java ResourceBundle class

--tcl Tcl mode: input is a tcl/msgcat .msg file

66

Appendix D. GNU Command-line tools reference

Input file location:
FILE ...
input .mo files

If no input file is given or if it is -, standard input is read.

Input file location in Java mode:
-r, --resource=RESOURCE
resource name

-l, --locale=LOCALE
locale name, either language or language_COUNTRY

The class name is determined by appending the locale name to the
resource name, separated with an underscore. The class is located
using the CLASSPATH.

Input file location in Tcl mode:
-l, --locale=LOCALE
locale name, either language or language_COUNTRY

-d DIRECTORY
base directory of .msg message catalogs

The -l and -d options are mandatory. The .msg file is located in the
specified directory.

Output file location:
-o, --output-file=FILE
write output to specified file

The results are written to standard output if no output file is speci-

fied or if it is -.

Output details:
-e, --no-escape
do not use C escapes in output (default)

-E, --escape
use C escapes in output, no extended chars

--force-po
write PO file even if empty

-i, --indent
write indented output style

--strict
write strict uniforum style

-w, --width=NUMBER
set output page width

--no-wrap
do not break long message lines, longer than the output page
width, into several lines

-s, --sort-output
generate sorted output

Informative output:
-h, --help
display this help and exit

67

Appendix D. GNU Command-line tools reference

-V, --version
output version information and exit

-v, --verbose
increase verbosity level

AUTHOR
Written by Ulrich Drepper.

REPORTING BUGS
Report bugs to <bug-gnu-gettext@gnu.org >.

COPYRIGHT
Copyright (C) 1995-1998, 2000-2002 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is
NO warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE.

SEE ALSO
The full documentation for msgunfmt is maintained as a Texinfo manual.
If the info and msgunfmt programs are properly installed at your site,
the command

info msgunfmt

should give you access to the complete manual.

msguniq
In case you did something to your PO files, that makes them contain duplicate mes-
sages, you can use msguniq to unify those duplicates.

NAME
msguniq - unify duplicate translations in message catalog

SYNOPSIS
msguniq [OPTION] [INPUTFILE]

DESCRIPTION
Unifies duplicate translations in a translation catalog. Finds dupli-

cate translations of the same message ID. Such duplicates are invalid
input for other programs like msgfmt, msgmerge or msgcat. By default,
duplicates are merged together. When using the --repeated option, only
duplicates are output, and all other messages are discarded. Comments
and extracted comments will be cumulated, except that if --use-

first is
specified, they will be taken from the first translation. File posi-

tions will be cumulated. When using the --unique option, duplicates
are discarded.

Mandatory arguments to long options are mandatory for short options
too.

Input file location:
INPUTFILE
input PO file

-D, --directory=DIRECTORY
add DIRECTORY to list for input files search

If no input file is given or if it is -, standard input is read.

68

Appendix D. GNU Command-line tools reference

Output file location:
-o, --output-file=FILE
write output to specified file

The results are written to standard output if no output file is speci-

fied or if it is -.

Message selection:
-d, --repeated
print only duplicates

-u, --unique
print only unique messages, discard duplicates

Output details:
-t, --to-code=NAME
encoding for output

--use-first
use first available translation for each message, don’t merge
several translations

-e, --no-escape
do not use C escapes in output (default)

-E, --escape
use C escapes in output, no extended chars

--force-po
write PO file even if empty

-i, --indent
write the .po file using indented style

--no-location
do not write ’#: filename:line’ lines

-n, --add-location
generate ’#: filename:line’ lines (default)

--strict
write out strict Uniforum conforming .po file

-w, --width=NUMBER
set output page width

--no-wrap
do not break long message lines, longer than the output page
width, into several lines

-s, --sort-output
generate sorted output

-F, --sort-by-file
sort output by file location

Informative output:
-h, --help
display this help and exit

-V, --version
output version information and exit

AUTHOR
Written by Bruno Haible.

69

Appendix D. GNU Command-line tools reference

REPORTING BUGS
Report bugs to <bug-gnu-gettext@gnu.org >.

COPYRIGHT
Copyright (C) 2001-2002 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is
NO warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE.

SEE ALSO
The full documentation for msguniq is maintained as a Texinfo manual.
If the info and msguniq programs are properly installed at your site,
the command

info msguniq

should give you access to the complete manual.

xgettext
This tool is the GNU equivalent to the dxgettext command line tool. It does not work
with Delphi, but it works with C and C++.

NAME
xgettext - extract gettext strings from source

SYNOPSIS
xgettext [OPTION] [INPUTFILE]...

DESCRIPTION
Extract translatable strings from given input files.

Mandatory arguments to long options are mandatory for short options
too. Similarly for optional arguments.

Input file location:
INPUTFILE ...
input files

-f, --files-from=FILE
get list of input files from FILE

-D, --directory=DIRECTORY
add DIRECTORY to list for input files search

If input file is -, standard input is read.

Output file location:
-d, --default-domain=NAME
use NAME.po for output (instead of messages.po)

-o, --output=FILE
write output to specified file

-p, --output-dir=DIR
output files will be placed in directory DIR

If output file is -, output is written to standard output.

Choice of input file language:
-L, --language=NAME
recognise the specified language (C, C++, ObjectiveC, PO,
Python, Lisp, EmacsLisp, librep, Java, awk, YCP, Tcl, RST,

70

Appendix D. GNU Command-line tools reference

Glade)

-C, --c++
shorthand for --language=C++

By default the language is guessed depending on the input file name
extension.

Operation mode:
-j, --join-existing
join messages with existing file

-x, --exclude-file=FILE.po
entries from FILE.po are not extracted

-c, --add-comments[=TAG]
place comment block with TAG (or those preceding keyword lines)
in output file

Language=C/C++ specific options:
-a, --extract-all
extract all strings

-k, --keyword[=WORD]
additional keyword to be looked for (without WORD means not to
use default keywords)

-T, --trigraphs
understand ANSI C trigraphs for input

--debug
more detailed formatstring recognition result

Output details:
-e, --no-escape
do not use C escapes in output (default)

-E, --escape
use C escapes in output, no extended chars

--force-po
write PO file even if empty

-i, --indent
write the .po file using indented style

--no-location
do not write ’#: filename:line’ lines

-n, --add-location
generate ’#: filename:line’ lines (default)

--strict
write out strict Uniforum conforming .po file

-w, --width=NUMBER
set output page width

--no-wrap
do not break long message lines, longer than the output page
width, into several lines

-s, --sort-output
generate sorted output

-F, --sort-by-file

71

Appendix D. GNU Command-line tools reference

sort output by file location

--omit-header
don’t write header with ‘msgid ""’ entry

--copyright-holder=STRING
set copyright holder in output

--foreign-user
omit FSF copyright in output for foreign user

-m, --msgstr-prefix[=STRING]
use STRING or "" as prefix for msgstr entries

-M, --msgstr-suffix[=STRING]
use STRING or "" as suffix for msgstr entries

Informative output:
-h, --help
display this help and exit

-V, --version
output version information and exit

AUTHOR
Written by Ulrich Drepper.

REPORTING BUGS
Report bugs to <bug-gnu-gettext@gnu.org >.

COPYRIGHT
Copyright (C) 1995-1998, 2000-2002 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is
NO warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE.

SEE ALSO
The full documentation for xgettext is maintained as a Texinfo manual.
If the info and xgettext programs are properly installed at your site,
the command

info xgettext

should give you access to the complete manual.

72

Appendix E. GUI tools reference

PO files
In Windows Explorer, you can click with your right mouse button on po files and
choose "Compile to mo file" and "Merge template". If you have installed a po file
editor, like poEdit1, you can also just open the po file.

MO files
In Windows Explorer, you can click with your right mouse button on po files and
choose "Decompile to po file".

Executables (DLL, EXE files)
In Windows Explorer, you can click with your right mouse button on po files and
choose "Extract Strings" and "Embed translations". The first will extract all strings
from the resource part of the file into a po file, and the second will append all trans-
lation files (mo files) from the locale subdirectory to the executable file.

File folders
In Windows Explorer, you can click with your right mouse button on a file folder and
choose "Extract translations to template". This will enable you to scan a lot of source
code files for strings to translate.

Notes
1. http://poedit.sf.net/

73

Appendix E. GUI tools reference

74

Appendix F. Standards

ISO 639 language codes

aa Afar
ab Abkhazian
ae Avestan
af Afrikaans
ak Akan
am Amharic
an Aragonese
ar Arabic
as Assamese
av Avaric
ay Aymara
az Azerbaijani
ba Bashkir
be Belarusian
bg Bulgarian
bh Bihari
bi Bislama
bm Bambara
bn Bengali
bo Tibetan
br Breton
bs Bosnian
ca Catalan
ce Chechen
ch Chamorro
co Corsican
cr Cree
cs Czech
cv Chuvash
cy Welsh
da Danish
de German
dv Divehi
dz Dzongkha
ee Ewe
el Greek
en English
en_US American English
en_GB British English
en_AU Australian English
eo Esperanto
es Spanish
et Estonian
eu Basque
fa Persian
ff Fulah
fi Finnish
fj Fijian
fo Faroese
fr French
fr_BE Walloon
fy Frisian
ga Irish
gd Gaelic
gl Gallegan
gn Guarani
gu Gujarati
gv Manx
ha Hausa
he Hebrew

75

Appendix F. Standards

hi Hindi
ho Hiri Motu
hr Croatian
ht Haitian
hu Hungarian
hy Armenian
hz Herero
ia Interlingua
id Indonesian
ie Interlingue
ig Igbo
ii Sichuan Yi
ik Inupiaq
io Ido
is Icelandic
it Italian
iu Inuktitut
ja Japanese
jv Javanese
ka Georgian
kg Kongo
ki Kikuyu
kj Kuanyama
kk Kazakh
kl Greenlandic
km Khmer
kn Kannada
ko Korean
kr Kanuri
ks Kashmiri
ku Kurdish
kw Cornish
kv Komi
ky Kirghiz
la Latin
lb Luxembourgish
lg Ganda
li Limburgan
ln Lingala
lo Lao
lt Lithuanian
lu Luba-Katanga
lv Latvian
mg Malagasy
mh Marshallese
mi Maori
mk Macedonian
ml Malayalam
mn Mongolian
mo Moldavian
mr Marathi
ms Malay
mt Maltese
my Burmese
na Nauru
nb Norwegian Bokmaal
nd Ndebele, North
ne Nepali
ng Ndonga
nl Dutch
nl_BE Flemish
nn Norwegian Nynorsk
no Norwegian
nr Ndebele, South
nv Navajo
ny Chichewa

76

Appendix F. Standards

oc Occitan
oj Ojibwa
om Oromo
or Oriya
os Ossetian
pa Panjabi
pi Pali
pl Polish
ps Pushto
pt Portuguese
qu Quechua
rm Raeto-Romance
rn Rundi
ro Romanian
ru Russian
rw Kinyarwanda
sa Sanskrit
sc Sardinian
sd Sindhi
se Northern Sami
sg Sango
si Sinhalese
sk Slovak
sl Slovenian
sm Samoan
sn Shona
so Somali
sq Albanian
sr Serbian
ss Swati
st Sotho, Southern
su Sundanese
sv Swedish
sw Swahili
ta Tamil
te Telugu
tg Tajik
th Thai
ti Tigrinya
tk Turkmen
tl Tagalog
tn Tswana
to Tonga
tr Turkish
ts Tsonga
tt Tatar
tw Twi
ty Tahitian
ug Uighur
uk Ukrainian
ur Urdu
uz Uzbek
ve Venda
vi Vietnamese
vo Volapuk
wa Walloon
wo Wolof
xh Xhosa
yi Yiddish
yo Yoruba
za Zhuang
zh Chinese
zu Zulu

77

Appendix F. Standards

ISO 3166 country codes

Country: AFGHANISTAN
Code: AF

Country: ALBANIA
Code: AL

Country: ALGERIA
Code: DZ

Country: AMERICAN SAMOA
Code: AS

Country: ANDORRA
Code: AD

Country: ANGOLA
Code: AO

Country: ANGUILLA
Code: AI

Country: ANTARCTICA
Code: AQ

Country: ANTIGUA AND BARBUDA
Code: AG

Country: ARGENTINA
Code: AR

Country: ARMENIA
Code: AM

Country: ARUBA
Code: AW

Country: AUSTRALIA
Code: AU

Country: AUSTRIA
Code: AT

Country: AZERBAIJAN
Code: AZ

Country: BAHAMAS
Code: BS

Country: BAHRAIN
Code: BH

Country: BANGLADESH
Code: BD

Country: BARBADOS
Code: BB

Country: BELARUS
Code: BY

78

Appendix F. Standards

Country: BELGIUM
Code: BE

Country: BELIZE
Code: BZ

Country: BENIN
Code: BJ

Country: BERMUDA
Code: BM

Country: BHUTAN
Code: BT

Country: BOLIVIA
Code: BO

Country: BOSNIA AND HERZEGOVINA
Code: BA

Country: BOTSWANA
Code: BW

Country: BOUVET ISLAND
Code: BV

Country: BRAZIL
Code: BR

Country: BRITISH INDIAN OCEAN TERRITORY
Code: IO

Country: BRUNEI DARUSSALAM
Code: BN

Country: BULGARIA
Code: BG

Country: BURKINA FASO
Code: BF

Country: BURUNDI
Code: BI

Country: CAMBODIA
Code: KH

Country: CAMEROON
Code: CM

Country: CANADA
Code: CA

Country: CAPE VERDE
Code: CV

Country: CAYMAN ISLANDS
Code: KY

Country: CENTRAL AFRICAN REPUBLIC

79

Appendix F. Standards

Code: CF

Country: CHAD
Code: TD

Country: CHILE
Code: CL

Country: CHINA
Code: CN

Country: CHRISTMAS ISLAND
Code: CX

Country: COCOS (KEELING) ISLANDS
Code: CC

Country: COLOMBIA
Code: CO

Country: COMOROS
Code: KM

Country: CONGO
Code: CG

Country: CONGO, THE DEMOCRATIC REPUBLIC OF THE
Code: CD

Country: COOK ISLANDS
Code: CK

Country: COSTA RICA
Code: CR

Country: COTE D’IVOIRE
Code: CI

Country: CROATIA
Code: HR

Country: CUBA
Code: CU

Country: CYPRUS
Code: CY

Country: CZECH REPUBLIC
Code: CZ

Country: DENMARK
Code: DK

Country: DJIBOUTI
Code: DJ

Country: DOMINICA
Code: DM

Country: DOMINICAN REPUBLIC
Code: DO

80

Appendix F. Standards

Country: ECUADOR
Code: EC

Country: EGYPT
Code: EG

Country: EL SALVADOR
Code: SV

Country: EQUATORIAL GUINEA
Code: GQ

Country: ERITREA
Code: ER

Country: ESTONIA
Code: EE

Country: ETHIOPIA
Code: ET

Country: FALKLAND ISLANDS (MALVINAS)
Code: FK

Country: FAROE ISLANDS
Code: FO

Country: FIJI
Code: FJ

Country: FINLAND
Code: FI

Country: FRANCE
Code: FR

Country: FRENCH GUIANA
Code: GF

Country: FRENCH POLYNESIA
Code: PF

Country: FRENCH SOUTHERN TERRITORIES
Code: TF

Country: GABON
Code: GA

Country: GAMBIA
Code: GM

Country: GEORGIA
Code: GE

Country: GERMANY
Code: DE

Country: GHANA
Code: GH

Country: GIBRALTAR

81

Appendix F. Standards

Code: GI

Country: GREECE
Code: GR

Country: GREENLAND
Code: GL

Country: GRENADA
Code: GD

Country: GUADELOUPE
Code: GP

Country: GUAM
Code: GU

Country: GUATEMALA
Code: GT

Country: GUINEA
Code: GN

Country: GUINEA-BISSAU
Code: GW

Country: GUYANA
Code: GY

Country: HAITI
Code: HT

Country: HEARD ISLAND AND MCDONALD ISLANDS
Code: HM

Country: HOLY SEE (VATICAN CITY STATE)
Code: VA

Country: HONDURAS
Code: HN

Country: HONG KONG
Code: HK

Country: HUNGARY
Code: HU

Country: ICELAND
Code: IS

Country: INDIA
Code: IN

Country: INDONESIA
Code: ID

Country: IRAN, ISLAMIC REPUBLIC OF
Code: IR

Country: IRAQ
Code: IQ

82

Appendix F. Standards

Country: IRELAND
Code: IE

Country: ISRAEL
Code: IL

Country: ITALY
Code: IT

Country: JAMAICA
Code: JM

Country: JAPAN
Code: JP

Country: JORDAN
Code: JO

Country: KAZAKHSTAN
Code: KZ

Country: KENYA
Code: KE

Country: KIRIBATI
Code: KI

Country: KOREA, DEMOCRATIC PEOPLE’S REPUBLIC OF
Code: KP

Country: KOREA, REPUBLIC OF
Code: KR

Country: KUWAIT
Code: KW

Country: KYRGYZSTAN
Code: KG

Country: LAO PEOPLE’S DEMOCRATIC REPUBLIC
Code: LA

Country: LATVIA
Code: LV

Country: LEBANON
Code: LB

Country: LESOTHO
Code: LS

Country: LIBERIA
Code: LR

Country: LIBYAN ARAB JAMAHIRIYA
Code: LY

Country: LIECHTENSTEIN
Code: LI

Country: LITHUANIA

83

Appendix F. Standards

Code: LT

Country: LUXEMBOURG
Code: LU

Country: MACAO
Code: MO

Country: MACEDONIA, THE FORMER YUGOSLAV REPUBLIC OF
Code: MK

Country: MADAGASCAR
Code: MG

Country: MALAWI
Code: MW

Country: MALAYSIA
Code: MY

Country: MALDIVES
Code: MV

Country: MALI
Code: ML

Country: MALTA
Code: MT

Country: MARSHALL ISLANDS
Code: MH

Country: MARTINIQUE
Code: MQ

Country: MAURITANIA
Code: MR

Country: MAURITIUS
Code: MU

Country: MAYOTTE
Code: YT

Country: MEXICO
Code: MX

Country: MICRONESIA, FEDERATED STATES OF
Code: FM

Country: MOLDOVA, REPUBLIC OF
Code: MD

Country: MONACO
Code: MC

Country: MONGOLIA
Code: MN

Country: MONTSERRAT
Code: MS

84

Appendix F. Standards

Country: MOROCCO
Code: MA

Country: MOZAMBIQUE
Code: MZ

Country: MYANMAR
Code: MM

Country: NAMIBIA
Code: NA

Country: NAURU
Code: NR

Country: NEPAL
Code: NP

Country: NETHERLANDS
Code: NL

Country: NETHERLANDS ANTILLES
Code: AN

Country: NEW CALEDONIA
Code: NC

Country: NEW ZEALAND
Code: NZ

Country: NICARAGUA
Code: NI

Country: NIGER
Code: NE

Country: NIGERIA
Code: NG

Country: NIUE
Code: NU

Country: NORFOLK ISLAND
Code: NF

Country: NORTHERN MARIANA ISLANDS
Code: MP

Country: NORWAY
Code: NO

Country: OMAN
Code: OM

Country: PAKISTAN
Code: PK

Country: PALAU
Code: PW

Country: PALESTINIAN TERRITORY, OCCUPIED

85

Appendix F. Standards

Code: PS

Country: PANAMA
Code: PA

Country: PAPUA NEW GUINEA
Code: PG

Country: PARAGUAY
Code: PY

Country: PERU
Code: PE

Country: PHILIPPINES
Code: PH

Country: PITCAIRN
Code: PN

Country: POLAND
Code: PL

Country: PORTUGAL
Code: PT

Country: PUERTO RICO
Code: PR

Country: QATAR
Code: QA

Country: REUNION
Code: RE

Country: ROMANIA
Code: RO

Country: RUSSIAN FEDERATION
Code: RU

Country: RWANDA
Code: RW

Country: SAINT HELENA
Code: SH

Country: SAINT KITTS AND NEVIS
Code: KN

Country: SAINT LUCIA
Code: LC

Country: SAINT PIERRE AND MIQUELON
Code: PM

Country: SAINT VINCENT AND THE GRENADINES
Code: VC

Country: SAMOA
Code: WS

86

Appendix F. Standards

Country: SAN MARINO
Code: SM

Country: SAO TOME AND PRINCIPE
Code: ST

Country: SAUDI ARABIA
Code: SA

Country: SENEGAL
Code: SN

Country: SERBIA AND MONTENEGRO
Code: CS

Country: SEYCHELLES
Code: SC

Country: SIERRA LEONE
Code: SL

Country: SINGAPORE
Code: SG

Country: SLOVAKIA
Code: SK

Country: SLOVENIA
Code: SI

Country: SOLOMON ISLANDS
Code: SB

Country: SOMALIA
Code: SO

Country: SOUTH AFRICA
Code: ZA

Country: SOUTH GEORGIA AND THE SOUTH SANDWICH ISLANDS
Code: GS

Country: SPAIN
Code: ES

Country: SRI LANKA
Code: LK

Country: SUDAN
Code: SD

Country: SURINAME
Code: SR

Country: SVALBARD AND JAN MAYEN
Code: SJ

Country: SWAZILAND
Code: SZ

Country: SWEDEN

87

Appendix F. Standards

Code: SE

Country: SWITZERLAND
Code: CH

Country: SYRIAN ARAB REPUBLIC
Code: SY

Country: TAIWAN, PROVINCE OF CHINA
Code: TW

Country: TAJIKISTAN
Code: TJ

Country: TANZANIA, UNITED REPUBLIC OF
Code: TZ

Country: THAILAND
Code: TH

Country: TIMOR-LESTE
Code: TL

Country: TOGO
Code: TG

Country: TOKELAU
Code: TK

Country: TONGA
Code: TO

Country: TRINIDAD AND TOBAGO
Code: TT

Country: TUNISIA
Code: TN

Country: TURKEY
Code: TR

Country: TURKMENISTAN
Code: TM

Country: TURKS AND CAICOS ISLANDS
Code: TC

Country: TUVALU
Code: TV

Country: UGANDA
Code: UG

Country: UKRAINE
Code: UA

Country: UNITED ARAB EMIRATES
Code: AE

Country: UNITED KINGDOM
Code: GB

88

Appendix F. Standards

Country: UNITED STATES
Code: US

Country: UNITED STATES MINOR OUTLYING ISLANDS
Code: UM

Country: URUGUAY
Code: UY

Country: UZBEKISTAN
Code: UZ

Country: VANUATU
Code: VU

Country: VENEZUELA
Code: VE

Country: VIET NAM
Code: VN

Country: VIRGIN ISLANDS, BRITISH
Code: VG

Country: VIRGIN ISLANDS, U.S.
Code: VI

Country: WALLIS AND FUTUNA
Code: WF

Country: WESTERN SAHARA
Code: EH

Country: YEMEN
Code: YE

Country: ZAMBIA
Code: ZM

Country: ZIMBABWE
Code: ZW

89

Appendix F. Standards

90

Appendix G. File formats

The format of GNU PO files
This section was last updated august 2nd, 2003 by copying the appropriate section
from the GNU gettext manual.

A PO file is made up of many entries, each entry holding the relation between an
original untranslated string and its corresponding translation. All entries in a given
PO file usually pertain to a single project, and all translations are expressed in a single
target language. One PO file entry has the following schematic structure:

white-space
translator-comments
#. automatic-comments
#: reference...
#, flag...
msgid "untranslated-string"
msgstr "translated-string"

The general structure of a PO file should be well understood by the translator. When
using PO mode, very little has to be known about the format details, as PO mode
takes care of them for her.

Entries begin with some optional white space. Usually, when generated through
GNU gettext tools, there is exactly one blank line between entries. Then comments
follow, on lines all starting with the character #. There are two kinds of comments:
those which have some white space immediately following the #, which comments
are created and maintained exclusively by the translator, and those which have some
non-white character just after the #, which comments are created and maintained
automatically by GNU gettext tools. All comments, of either kind, are optional.

After white space and comments, entries show two strings, namely first the untrans-
lated string as it appears in the original program sources, and then, the translation of
this string. The original string is introduced by the keyword msgid , and the transla-
tion, by msgstr . The two strings, untranslated and translated, are quoted in various
ways in the PO file, using " delimiters and \ escapes, but the translator does not re-
ally have to pay attention to the precise quoting format, as PO mode fully takes care
of quoting for her.

The msgid strings, as well as automatic comments, are produced and managed by
other GNU gettext tools, and PO mode does not provide means for the translator
to alter these. The most she can do is merely deleting them, and only by deleting the
whole entry. On the other hand, the msgstr string, as well as translator comments,
are really meant for the translator, and PO mode gives her the full control she needs.

The comment lines beginning with #, are special because they are not completely
ignored by the programs as comments generally are. The comma separated list of
flags is used by the msgfmt program to give the user some better diagnostic messages.
Currently there are two forms of flags defined:

fuzzy: This flag can be generated by the msgmerge program or it can be inserted by
the translator herself. It shows that the msgstr string might not be a correct translation
(anymore). Only the translator can judge if the translation requires further modification,
or is acceptable as is. Once satisfied with the translation, she then removes this fuzzy
attribute. The msgmerge program inserts this when it combined the msgid and msgstr
entries after fuzzy search only.

c-format: These flags should not be added by a human. Instead only the xgettext pro-
gram adds them. In an automated PO file processing system as proposed here the user

91

Appendix G. File formats

changes would be thrown away again as soon as the xgettext program generates a new
template file.

In case the c-format flag is given for a string the msgfmt does some more tests to check
to validity of the translation.

A different kind of entries is used for translations which involve plural forms.

white-space
translator-comments
#. automatic-comments
#: reference...
#, flag...
msgid untranslated-string-singular
msgid_plural untranslated-string-plural
msgstr[0] "translated-string-case-0"
...
msgstr[N] "translated-string-case-n"

It happens that some lines, usually whitespace or comments, follow the very last
entry of a PO file. Such lines are not part of any entry, and PO mode is unable to
take action on those lines. By using the PO mode function M-x po-normalize , the
translator may get rid of those spurious lines.

The remainder of this section may be safely skipped by those using PO mode, yet
it may be interesting for everybody to have a better idea of the precise format of a
PO file. On the other hand, those not having Emacs handy should carefully continue
reading on.

Each of "untranslated-string and "translated-string" respects the C syntax for a char-
acter string, including the surrounding quotes and embedded backslashed escape
sequences. When the time comes to write multi-line strings, one should not use es-
caped newlines. Instead, a closing quote should follow the last character on the line
to be continued, and an opening quote should resume the string at the beginning of
the following PO file line. For example:

msgid ""
"Here is an example of how one might continue a very long string\n"
"for the common case the string represents multi-line output.\n"

In this example, the empty string is used on the first line, to allow better alignment
of the H from the word Here over the f from the word for . In this example, the
msgid keyword is followed by three strings, which are meant to be concatenated.
Concatenating the empty string does not change the resulting overall string, but it
is a way for us to comply with the necessity of msgid to be followed by a string on
the same line, while keeping the multi-line presentation left-justified, as we find this
to be a cleaner disposition. The empty string could have been omitted, but only if
the string starting with Here was promoted on the first line, right after msgid . It was
not really necessary either to switch between the two last quoted strings immediately
after the newline \n , the switch could have occurred after any other character, we just
did it this way because it is neater.

One should carefully distinguish between end of lines marked as \n inside quotes,
which are part of the represented string, and end of lines in the PO file itself, outside
string quotes, which have no incidence on the represented string.

Outside strings, white lines and comments may be used freely. Comments start at
the beginning of a line with # and extend until the end of the PO file line. Comments
written by translators should have the initial # immediately followed by some white
space. If the # is not immediately followed by white space, this comment is most
likely generated and managed by specialized GNU tools, and might disappear or be
replaced unexpectedly when the PO file is given to msgmerge.

92

Appendix G. File formats

The format of GNU MO files
This section was last updated august 2nd, 2003 by copying the appropriate section
from the GNU gettext manual.

The format of the generated MO files is best described by a picture, which appears
below.

The first two words serve the identification of the file. The magic number will always
signal GNU MO files. The number is stored in the byte order of the generating ma-
chine, so the magic number really is two numbers: 0x950412de and 0xde120495. The
second word describes the current revision of the file format. For now the revision
is 0. This might change in future versions, and ensures that the readers of MO files
can distinguish new formats from old ones, so that both can be handled correctly.
The version is kept separate from the magic number, instead of using different magic
numbers for different formats, mainly because /etc/magic is not updated often. It
might be better to have magic separated from internal format version identification.

Follow a number of pointers to later tables in the file, allowing for the extension of
the prefix part of MO files without having to recompile programs reading them. This
might become useful for later inserting a few flag bits, indication about the charset
used, new tables, or other things.

Then, at offset O and offset T in the picture, two tables of string descriptors can be
found. In both tables, each string descriptor uses two 32 bits integers, one for the
string length, another for the offset of the string in the MO file, counting in bytes from
the start of the file. The first table contains descriptors for the original strings, and is
sorted so the original strings are in increasing lexicographical order. The second table
contains descriptors for the translated strings, and is parallel to the first table: to find
the corresponding translation one has to access the array slot in the second array with
the same index.

Having the original strings sorted enables the use of simple binary search, for when
the MO file does not contain an hashing table, or for when it is not practical to use the
hashing table provided in the MO file. This also has another advantage, as the empty
string in a PO file GNU gettext is usually translated into some system information
attached to that particular MO file, and the empty string necessarily becomes the
first in both the original and translated tables, making the system information very
easy to find.

The size S of the hash table can be zero. In this case, the hash table itself is not con-
tained in the MO file. Some people might prefer this because a precomputed hashing
table takes disk space, and does not win that much speed. The hash table contains
indices to the sorted array of strings in the MO file. Conflict resolution is done by
double hashing. The precise hashing algorithm used is fairly dependent on GNU
gettext code, and is not documented here.

As for the strings themselves, they follow the hash file, and each is terminated with a
NUL, and this NULis not counted in the length which appears in the string descriptor.
The msgfmt

program has an option selecting the alignment for MO file strings. With this option,
each string is separately aligned so it starts at an offset which is a multiple of the
alignment value. On some RISC machines, a correct alignment will speed things up.

Plural forms are stored by letting the plural of the original string follow the singu-
lar of the original string, separated through a NULbyte. The length which appears in
the string descriptor includes both. However, only the singular of the original string
takes part in the hash table lookup. The plural variants of the translation are all stored
consecutively, separated through a NUL byte. Here also, the length in the string de-
scriptor includes all of them.

Nothing prevents a MO file from having embedded NULs in strings. However, the
program interface currently used already presumes that strings are NUL terminated,
so embedded NULs are somewhat useless. But the MO file format is general enough

93

Appendix G. File formats

so other interfaces would be later possible, if for example, we ever want to imple-
ment wide characters right in MO files, where NULbytes may accidently appear. (No,
we don’t want to have wide characters in MO files. They would make the file unnec-
essarily large, and the wchar_t type being platform dependent, MO files would be
platform dependent as well.)

This particular issue has been strongly debated in the GNU gettext development fo-
rum, and it is expectable that MO file format will evolve or change over time. It is
even possible that many formats may later be supported concurrently. But surely, we
have to start somewhere, and the MO file format described here is a good start. Noth-
ing is cast in concrete, and the format may later evolve fairly easily, so we should feel
comfortable with the current approach.

byte
+--+

0 | magic number = 0x950412de |
| |

4 | file format revision = 0 |
| |

8 | number of strings | == N
| |

12 | offset of table with original strings | == O
| |

16 | offset of table with translation strings | == T
| |

20 | size of hashing table | == S
| |

24 | offset of hashing table | == H
| |
. .
. (possibly more entries later) .
. .
| |

O | length & offset 0th string ----------------.
O + 8 | length & offset 1st string ------------------.

... ... | |
O + ((N-1)*8)| length & offset (N-1)th string | | |

| | | |
T | length & offset 0th translation ---------------.

T + 8 | length & offset 1st translation -----------------.
... ... | | | |

T + ((N-1)*8)| length & offset (N-1)th translation | | | | |
| | | | | |

H | start hash table | | | | |
... ... | | | |

H + S * 4 | end hash table | | | | |
NUL terminated 0th string <----------------’				
NUL terminated 1st string <------------------’				

... ... | |
| | | |
| NUL terminated 0th translation <---------------’ |
| | |
| NUL terminated 1st translation <-----------------’
| |

... ...
| |
+--+

94

Appendix H. How to handle specific classes

This appendix contains documentation on how to handle various classes that do
not translate easily using TranslateComponent() or TranslateProperties() . Most
classes are handled easily by just putting an ignore on some of their properties, while
other classes need more advanced handling.

Please note, that the TComponent.Name property is always ignored by default, and
doesn’t need to be specified.

VCL, important ones

TP_GlobalIgnoreClassProperty(TAction,’Category’);
TP_GlobalIgnoreClassProperty(TControl,’HelpKeyword’);
TP_GlobalIgnoreClassProperty(TNotebook,’Pages’);

VCL, not so important
These are normally not needed.

TP_GlobalIgnoreClassProperty(TControl,’ImeName’);
TP_GlobalIgnoreClass(TFont);

Database (DB unit)
Field names and table names often tend to have names that are also used for other
purposes elsewhere in the program. Therefore, it is very wise to add this somewhere
in your program if you are using databases.

TP_GlobalIgnoreClassProperty(TField,’DefaultExpression’);
TP_GlobalIgnoreClassProperty(TField,’FieldName’);
TP_GlobalIgnoreClassProperty(TField,’KeyFields’);
TP_GlobalIgnoreClassProperty(TField,’DisplayName’);
TP_GlobalIgnoreClassProperty(TField,’LookupKeyFields’);
TP_GlobalIgnoreClassProperty(TField,’LookupResultField’);
TP_GlobalIgnoreClassProperty(TField,’Origin’);
TP_GlobalIgnoreClass(TParam);
TP_GlobalIgnoreClassProperty(TFieldDef,’Name’);

MIDAS/Datasnap

TP_GlobalIgnoreClassProperty(TClientDataset,’CommandText’);
TP_GlobalIgnoreClassProperty(TClientDataset,’Filename’);
TP_GlobalIgnoreClassProperty(TClientDataset,’Filter’);
TP_GlobalIgnoreClassProperty(TClientDataset,’IndexFieldnames’);
TP_GlobalIgnoreClassProperty(TClientDataset,’IndexName’);
TP_GlobalIgnoreClassProperty(TClientDataset,’MasterFields’);
TP_GlobalIgnoreClassProperty(TClientDataset,’Params’);
TP_GlobalIgnoreClassProperty(TClientDataset,’ProviderName’);

95

Appendix H. How to handle specific classes

Database controls

TP_GlobalIgnoreClassProperty(TDBComboBox,’DataField’);
TP_GlobalIgnoreClassProperty(TDBCheckBox,’DataField’);
TP_GlobalIgnoreClassProperty(TDBEdit,’DataField’);
TP_GlobalIgnoreClassProperty(TDBImage,’DataField’);
TP_GlobalIgnoreClassProperty(TDBListBox,’DataField’);
TP_GlobalIgnoreClassProperty(TDBLookupControl,’DataField’);
TP_GlobalIgnoreClassProperty(TDBLookupControl,’KeyField’);
TP_GlobalIgnoreClassProperty(TDBLookupControl,’ListField’);
TP_GlobalIgnoreClassProperty(TDBMemo,’DataField’);
TP_GlobalIgnoreClassProperty(TDBRadioGroup,’DataField’);
TP_GlobalIgnoreClassProperty(TDBRichEdit,’DataField’);
TP_GlobalIgnoreClassProperty(TDBText,’DataField’);

Interbase Express (IBX)

TP_GlobalIgnoreClass(TIBDatabase);
TP_GlobalIgnoreClass(TIBDatabase);
TP_GlobalIgnoreClass(TIBTransaction);
TP_GlobalIgnoreClassProperty(TIBSQL,’UniqueRelationName’);

Borland Database Engine (BDE)

TP_GlobalIgnoreClass(TSession);
TP_GlobalIgnoreClass(TDatabase);

ADO components

TP_GlobalIgnoreClass (TADOConnection);
TP_GlobalIgnoreClassProperty(TADOQuery,’CommandText’);
TP_GlobalIgnoreClassProperty(TADOQuery,’ConnectionString’);
TP_GlobalIgnoreClassProperty(TADOQuery,’DatasetField’);
TP_GlobalIgnoreClassProperty(TADOQuery,’Filter’);
TP_GlobalIgnoreClassProperty(TADOQuery,’IndexFieldNames’);
TP_GlobalIgnoreClassProperty(TADOQuery,’IndexName’);
TP_GlobalIgnoreClassProperty(TADOQuery,’MasterFields’);
TP_GlobalIgnoreClassProperty(TADOTable,’IndexFieldNames’);
TP_GlobalIgnoreClassProperty(TADOTable,’IndexName’);
TP_GlobalIgnoreClassProperty(TADOTable,’MasterFields’);
TP_GlobalIgnoreClassProperty(TADOTable,’TableName’);
TP_GlobalIgnoreClassProperty(TADODataset,’CommandText’);
TP_GlobalIgnoreClassProperty(TADODataset,’ConnectionString’);
TP_GlobalIgnoreClassProperty(TADODataset,’DatasetField’);
TP_GlobalIgnoreClassProperty(TADODataset,’Filter’);
TP_GlobalIgnoreClassProperty(TADODataset,’IndexFieldNames’);
TP_GlobalIgnoreClassProperty(TADODataset,’IndexName’);
TP_GlobalIgnoreClassProperty(TADODataset,’MasterFields’);

ActiveX stuff

TP_GlobalIgnoreClass (TWebBrowser);

96

Appendix H. How to handle specific classes

Turbopower Orpheus

TP_GlobalIgnoreClassProperty(TO32FlexEdit,’About’);
TP_GlobalIgnoreClassProperty(TO32FlexEdit,’Validation’);
TP_GlobalIgnoreClassProperty(TOvcTimeEdit,’About’);
TP_GlobalIgnoreClassProperty(TOvcTimeEdit,’NowString’);

Turbopower Essentials

TP_GlobalIgnoreClassProperty(TEsDateEdit,’TodayString’);

TMS Software TAdvStringGrid
The TAdvStringGrid is not compatible with TranslateComponent(). You should
therefore put it on ignore:

TP_GlobalIgnoreClass (TAdvStringGrid);

But there is a solution to get it translated. The following text was provided by Sandro
Wendt:

As I needed to translate one of its descendants (a TAdvColumnGrid), I checked
with Bruno and found that the reason for the exceptions "Controls ” has no parent
window" were probably the inplace editors of the grid. There are two you can get
at through properties, but several you cannot as they are only contained in private
member fields. However, using the components array of the grid, you can get at these
as well.

This is the code I used:

var
i: integer;
FCompList: TObjectList;

begin
FCompList := TObjectList.Create(false);
try

for i := 0 to FieldDefinition_grid.ComponentCount - 1 do begin
if FieldDefinition_grid.Components[i] is TWinControl then begin

if TWinControl(FieldDefinition_grid.Components[i]).Parent = nil then begin
TWinControl(FieldDefinition_grid.Components[i]).Parent := FieldDefinition_grid;
FCompList.Add(FieldDefinition_grid.Components[i]);

end;
end;

end;
TranslateComponent (self);
for i := 0 to FCompList.Count - 1 do begin

TWinControl(FCompList[i]).Parent := nil;
end;

finally
FCompList.Free;

end;
end;

You need to set the Parent’s back to nil because otherwise especially the RichEdit
editors will display on top of the grid. Also, most inplace editors actually have a
parent assigned, so you only want to nil the ones you gave a parent in order for the
translation to succeed.

97

Appendix H. How to handle specific classes

98

Appendix I. Frequently Asked Questions

1. About this project

1.1. Is anybody using this?

Definitely. The concept, file formats and many of the tools are exactly the same
as are used to localize most Linux, KDE, Gnome, Unix software. It is also emerg-
ing as a very common translation tool on Windows. Many thousands of pro-
grams have been localized using GNU gettext.

1.2. Is it productive?

Definitely. It goes a long way to reduce the amount of work that has to be done
by the translator. Several tools, including KBabel, even provide automated raw
translations based on online dictionaries, so that the translator’s job is reduced
to finding incorrect translations. You’ll be amazed at how productive this trans-
lation environment is once you get started.

1.3. I use the Delphi Integrated Translation Environment (ITE) - should I switch?

A switch means that you have to change something, and all changes have a
cost. But if you still do development on your application, or if you are starting
up something completely new, the chance is very high that a switch pays off
quickly in terms of Return of Investment. If you are part of a large programming
group, and you use the Delphi ITE, try to ask your Boss how much money you
spend on translators, and whether a 50% reduction on these costs for every
future release would be a nice thing.

1.4. Why is this project called dxgettext?

The original GNU gettext software includes a tool named xgettext, that extracts
strings from a lot of different file formats, including C and C++ source code.
The main tool in this project is the one that extracts strings from Delphi source
code, so that tool was named dxgettext.

1.5. What’s the catch? (Why is it free?)

There is no catch. Developing a product is only a very small part of bringing
a product to the market. If the authors of this translation system would try to
earn money on it, there would a lot of work involved:

• Raising money to pay us. At least one guy needs to be fulltime on a commer-
cial project

• Marketing - this costs money when doing it commercially. Nobody wants to
pay for software they weren’t told about.

• Documentation - the current documentation is not near anything that a com-
mercial product requires. Much commercial software also sells better if you
make printed documentation, which means that you actually have to make
printed documentation to make your project succeed.

• CDs - customer’s don’t like receiving all software online, some simply want
CDs. And they don’t want CD-R’s, they want real CDs. That costs money.

• Release process - commercial software requires you to test your software with
all possible environments before releasing it. That’s a lot of work.

• Software design - in order to make software sell easily, you need to design the
software for it. Screenshots are everything, and GUIs are needed everywhere,
and the GUIs need to use the latest GUI features from Microsoft. Sometimes
a graphical designer is needed to make things look expensive.

99

Appendix I. Frequently Asked Questions

• Administration - all the above has to be administrated. When money is in-
volved, somebody has to be in charge etc.

What we do now is much easier:

• No money needed. We use our spare time to do it. If we don’t have spare
time, nothing is being done on the project.

• Marketing. When things are free, people talk about it. SourceForge tells about
it. We can announce it in newsgroups. We are very well placed on Google,
probably because of being on SourceForge. It doesn’t cost money and doesn’t
take time.

• Documentation - well, documentation is always boring, but people can live
with less when they don’t pay for it. Hopefully we have enough documenta-
tion, otherwise let us know.

• Release process - the first releases were quite buggy because of lack of testing.
But the users commented on it, and in cooperation the quality of the releases
have improved a lot, and the last many releases should not have any serious
bugs inside. This would never have worked this way commercially, but it
does as long as it is free.

• Software design. Free software only has one goal: Being the best choice for
those who use it. Since that’s how we prefer software, too, there is no conflict
between marketing and programmers on how the software should be.

• Administration - SourceForge and YahooGroups make much of our admin-
istration easier, and both would be unthinkable for commercial projects. We
don’t need to create a formal organization, because if somebody gets angry
at the project he can just take all the source-code and start another project as
a branch of this project. Of course we hope that this never happens, but this
mechanism means that people actually cooperate.

If you want to know more about why Open Source software works, Eric S. Ray-
mond has written a free book about it: The Cathedral and the Bazaar1

When Delphi developers cooperate on making Delphi better, we make Delphi
a better choice, and thus make us Delphi developers a better choice than those
programmers using other tools.

1.6. I have a question that is not on this list

Send an empty e-mail to dxgettext-subscribe@yahoogroups.com to join our
mailing list, and then write your question to dxgettext@yahoogroups.com

You can also send an e-mail directly to the maintainer of this FAQ:
Lars@dybdahl.dk

We’re always glad to help you out, and always happy to get feedback from our
users.

2. Considering to use this software

2.1. My program is not in English. What do I do?

Very easy, you do this:

1. Extract all strings from your program as it is now.

2. Translate your program to English.

3. Extract all strings from your program afterwards.

100

Appendix I. Frequently Asked Questions

4. Use the msgmergePOT tool to create an English->YourLanguage transla-
tion file.

Now you have an English language program with a translation to the language
that your program used before.

2.2. Can I use this to translate a German language program to English?

Yes, but it will only work on computers that use the same character set, i.e. iso-
8859-1. You can convert your application to English with the method specified
in the question above.

2.3. Does this support Unicode or widestrings?

Yes, this system supports widestrings all along, and actually does it much bet-
ter than the Delphi ITE. But please note, that Delphi has built-in limitations.
Delphi’s VCL does not do Unicode, and resourcestring retrieval isn’t Unicode
either.

But if you get Unicode components and use the features of GNU gettext for
Delphi, you can create an all-through Unicode program.

2.4. Does it work without Unicode or widestrings?

Yes. The gettext() function returns widestring, and Delphi will automatically
convert the strings to the local 8-bit character set when you use gettext() where
you don’t use widestrings otherwise. For instance, if you assign:

MyButton.Caption:=gettext(’New caption’);

Then gettext will return a widestring and Delphi will convert that to the local
8-bit character set before it is assigned to the caption.

2.5. My program uses resourcestrings - can gettext handle this?

Yes. It will automatically extract resourcestrings into the .po files, and it will
automatic translate the resourcestrings when they are used in your source code.

3. Something is not being translated

3.1. I want to know exactly why something isn’t translated

As of version 1.1, there is a setting in gnugettext.pas, that will output a lot of
details about the translation system into a logfile. Switch on this feature and
you can see exactly how the translation system sees the world.

3.2. I use TObject derivatives that are not derived from TComponent, how do I
translate them?

The "TranslateProperties()" function handles all kinds of objects well, even
TCollections, as long as they are derived from TPersistent. This includes report
components, network components etc.

3.3. My ’This is version ’+Version+’ of my program’ is not extracted

Dxgettext has some logic, but it can’t read Pascal code like the Delphi compiler
does. Therefore, in the above example, Version must be defined in the same
unit, otherwise dxgettext isn’t able to extract it well.

101

Appendix I. Frequently Asked Questions

3.4. Some Delphi things are not translated. How do I translate these?

Get a translation for the library you need to have translated. The homepage
provides translations for several libraries and for the Delphi runtime library in
several languages, but you can also do it yourself, if you have the source code.

If you get a delphi.mo file with the translations for the Delphi runtime library
and the VCL, put it together with your own translation and call:

AddDomainForResourceString (’delphi’);

Somewhere in your program before you start translating forms etc.

If you still need support on this subject, please join our mailing list and get
instructions there.

3.5. How do I translate the Delphi runtime library messages?

See this link2 for instructions.

3.6. My menu items are not translated. Why?

Please note that a TMainMenu has a property named AutoHotkeys. Set this to
maManual, or it will automatically change the captions of the menu items, and
thus make it impossible to translate the menus correctly.

3.7. I have some 3rd party components without source. How do I translate
those?

All resourcestrings in the 3rd party components will be translated automati-
cally, so if you can make a list of them and add put them in resourcestrings in
your source code, gnugettext.pas will extract the texts and translate them prop-
erly.

But if you cannot make a list, or if the 3rd party component contains form re-
sources (like those in a dfm file), you could compile your program with separate
packages and include the translation for that package together with the pack-
age.

If your application uses the xyz package and is translated to German (language
code "de"), you might end up with the following files:

appdir\application.exe (your program)
appdir\locale\de\LC_MESSAGES\default.mo (the translation of your pro-
gram)
appdir\locale\de\LC_MESSAGES\delphi.mo (the translation of the Del-
phi VCL)
winsysdir\xyz.bpl (the xyz package)
winsysdir\xyz.de (the translation of the xyz pack-
age)

3.8. Something in my forms isn’t translated. What do I do?

The extraction tool doesn’t extract all properties from forms in order to make
the life for the translators much easier. But even though it extracts a lot of texts,
not all text may be translated once you run the program. You can solve this by
assigning the text in the Form’s OnCreate event like this:

component.property:=gettext(’This text wasn”t translated in the first place’);

4. Concepts

102

Appendix I. Frequently Asked Questions

4.1. How does gettext handle two different translations of the same English
word?

Experience with thousands of programs shows, that this is extremely rare.
When it does happen, it is usually an error. There are a few ways out, though,
and the easiest one is to put that text into another domain. Another solution is
to add a whitespace and then programmatically remove it again. This will
make the text differ from the other English word.

4.2. How should I choose text domains?

Most applications only use one text domain, and this set of tools assumes that
that text domain is named "default". Normally, only very large projects need
multiple text domains, and since it is fairly easy to split a domain into two, you
shouldn’t worry until your project gets too big for one domain, and then you
will probably know by the structure of your project, how to divide the domain
into smaller domains. Many projects that have several executables, still only
use one single domain for all the applications, because it reduces the amount of
work that is needed by the translator.

4.3. Why are memos extracted line by line?

Delphi stores memos as a list of strings in dfm files, and does not put any in-
formation into the dfm files to tell that these strings come from a TStrings ob-
ject. Therefore, it is not possible for the string extraction tools to see, that these
strings should be assembled into one, big, multiline string in the po file. And
since the po file doesn’t contain the full memo text as one string, but as sev-
eral lines, the TranslateComponent() procedure cannot do anything else than
translate the memos line by line.

Another problem is that some programmers use the TMemo.Lines.Objects[]
array to store objects. When you translate such a memo, it is important
not to destroy these objects, which would be the case if a translation was
assigned to the TMemo.Lines.Text property. By assigning translations to each
TMemo.Lines.Strings[] index, this is avoided.

There is way to make it all work, though: Instead of putting the memo contents
into the user interface at design time, you can assign the string at runtime like
this:

MyMemo.Lines.Text:=
_(’This is a demo of my multiline memo translation, where ’+

’the entire memo is translated as one big message.’+sLineBreak+
’This message even contains a programmed line break using ’+
’the sLineBreak constant, which is equivalent to #13#10 in ’+
’Delphi and #10 in Kylix.’);

Here, the string extractor will take the entire string as one big message, the
translator will translate it all as one big message, and at runtime it will be as-
signed as one big message.

5. Using it

5.1. I want to force my program to use another language than Windows settings,
how?

Insert this line as the first in your .dpr main program block:

UseLanguage (’fr’);

103

Appendix I. Frequently Asked Questions

Here, ’fr’ means french. Please note that you can not just switch to a language
that uses characters that isn’t supported in your Windows. Switching to greek,
russian or chinese without the proper fonts etc. won’t work.

There is also another possibility: You can set the environment variable "LANG"
to the desired language code, e.g. "set LANG=fr". This will override the detec-
tion of the Windows language settings.

5.2. How do I switch language at runtime?

See the source of the TntSample application that is included in the download
for Delphi.

5.3. I want to use language XXX but my controls do not support Unicode, what
do I do?

The gettext functions return widestrings, which will automatically be converted
to the local character set by Delphi when you assign it to Control properties of
type string or ansistring. This way, the local 8-bit characterset will be support
automatically.

But if you really should need Unicode support in your controls, look for TNT
controls. They are free and do Unicode on Windows NT/2000/XP.

6. Errors

6.1. In Kylix and CLX apps, gettext(’Test’) cannot compile

In CLX, each form has a gettext() function that will be chosen instead of gnuget-
text.gettext(). Use _() instead:

a:=_(’Test’);

6.2. I got an Access Violation. Why?

One of the forms that you translate using TranslateComponent() probably has
a component that doesn’t like one of its properties translated or has been pro-
grammed very badly and cannot be analyzed by TranslateComponent(). The
solution is to ignore this component. See the list at Appendix H> for more in-
formation, or contact our e-mail list3 for further information. If you send an
e-mail on that list you will most likely get your problem solved quickly.

Notes
1. http://www.firstmonday.dk/issues/issue3_3/raymond/

2. http://dybdahl.dk/dxgettext/docs/howto-mono.php

3. http://groups.yahoo.com/group/dxgettext/

104

Index

105

	GNU gettext for Delphi, C++ Builder and Kylix 1.2 beta
	Table of Contents
	Preface
	Chapter 1. Introduction
	How does GNU gettext work?
	Creating po files
	More gettext functions
	Resourcestrings
	Forms

	Chapter 2. Action
	Localize your first application
	New program versions, old translation files
	Create a single language application with localized runtime library
	Uses clauses
	Solving ambiguities
	Change words
	Adding spaces
	Using domains
	Using trailing comments

	Plural forms
	Database applications
	Preventing unwanted translations
	DisplayLabel property explained
	Setting displaylabel at runtime
	Display label at design time
	Multiple field name translations

	Translation repositories

	Chapter 3. Project management
	Introduction
	Coordinating translations
	The translator

	Chapter 4. Experienced programmers' topics
	Determinism and responsibility
	Text domain management
	The better alternative to resourcestring
	Debugging
	Directives

	Chapter 5. Advanced topics
	Migrating from the ITE to dxgettext
	Introduction
	The project
	Planning
	Tools I needed (and used)
	Doing the conversion
	Common ancestor forms are good!
	Handling components dxgettext doesn't handle
	Problems
	Conclusion

	Translation statistics
	Multiple instances
	Multithreading issues

	Appendix A. API reference
	procedure AddDomainForResourceString (domain:string);
	procedure RemoveDomainForResourceString (domain:string);
	function LoadResString(ResStringRec: PResStringRec): widestring;
	function LoadResStringW(ResStringRec: PResStringRec): widestring;
	function LoadResStringA(ResStringRec: PResStringRec): ansistring;
	var ExecutableFilename:string;
	procedure HookIntoResourceStrings (enabled:boolean=true; SupportPackages:boolean=false);
	const DebugLogFilename='c:.txt';
	TExecutable
	TGetPluralForm
	TGnuGettextInstance class
	procedure UseLanguage(LanguageCode: string);
	function (msg:widestring):widestring;
	function GetCurrentLanguage:string;
	function gettext(msg:widestring):widestring;
	function dgettext(Domain: string; MsgId: widestring): widestring;
	function ngettext(const singular,plural:widestring;Number:longint):widestring;
	function dngettext(Domain,singular,plural:widestring;Number:longint):widestring;
	function getcurrenttextdomain:string;
	procedure textdomain(Domain:string);
	procedure bindtextdomain(Domain:string; Directory:string);
	procedure bindtextdomainToFile (Domain,Filename:string);
	procedure GetListOfLanguages (domain:string; list:TStrings);
	function GetTranslationProperty (Propertyname:string):WideString;
	function GetTranslatorNameAndEmail:widestring;
	procedure SaveUntranslatedMsgids(filename: string);
	procedure TranslateProperties(AnObject:TObject; textdomain:string='');
	procedure TranslateComponent(AnObject: TComponent; TextDomain:string='');
	function TPCreateRetranslator:TExecutable;
	procedure TPIgnore(AnObject:TObject; const name:string);
	procedure TPGlobalIgnoreClass (IgnClass:TClass);
	procedure TPGlobalIgnoreClassProperty (IgnClass:TClass;propertyname:string);
	procedure TPGlobalHandleClass (HClass:TClass;Handler:TTranslator);

	Appendix B. "Hello, World" source code
	Sample.dpr
	gginitializer.pas
	SampleForm.pas
	SampleForm.dfm

	Appendix C. Dxgettext commandline tools reference
	assemble
	dfntopo
	dxgettext
	dxgreg
	ixtopo
	msgimport
	msgmergePOT
	msgmkignore
	msgremove
	msgshowheader
	msgsplitTStrings
	msgstripCR

	Appendix D. GNU Commandline tools reference
	msgattrib
	msgcat
	msgcmp
	msgcomm
	msgen
	msgexec
	msgfilter
	msgfmt
	msggrep
	msghack
	msginit
	msgmerge
	msgunfmt
	msguniq
	xgettext

	Appendix E. GUI tools reference
	PO files
	MO files
	Executables (DLL, EXE files)
	File folders

	Appendix F. Standards
	ISO 639 language codes
	ISO 3166 country codes

	Appendix G. File formats
	The format of GNU PO files
	The format of GNU MO files

	Appendix H. How to handle specific classes
	VCL, important ones
	VCL, not so important
	Database (DB unit)
	MIDAS/Datasnap
	Database controls
	Interbase Express (IBX)
	Borland Database Engine (BDE)
	ADO components
	ActiveX stuff
	Turbopower Orpheus
	Turbopower Essentials
	TMS Software TAdvStringGrid

	Appendix I. Frequently Asked Questions
	Index

